{"title":"Singular limits of the quasi-linear Kolmogorov-type equation with a source term","authors":"I. Kuznetsov, S. Sazhenkov","doi":"10.1142/s0219891621500247","DOIUrl":null,"url":null,"abstract":"Existence, uniqueness and stability of kinetic and entropy solutions to the boundary value problem associated with the Kolmogorov-type, genuinely nonlinear, degenerate hyperbolic–parabolic (ultra-parabolic) equation with a smooth source term is established. In addition, we consider the case when the source term contains a small positive parameter and collapses to the Dirac delta-function, as this parameter tends to zero. In this case, the limiting passage from the original equation with the smooth source to the impulsive ultra-parabolic equation is investigated and the formal limit is rigorously justified. Our proofs rely on the use of kinetic equations and the compensated compactness method for genuinely nonlinear balance laws.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500247","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Existence, uniqueness and stability of kinetic and entropy solutions to the boundary value problem associated with the Kolmogorov-type, genuinely nonlinear, degenerate hyperbolic–parabolic (ultra-parabolic) equation with a smooth source term is established. In addition, we consider the case when the source term contains a small positive parameter and collapses to the Dirac delta-function, as this parameter tends to zero. In this case, the limiting passage from the original equation with the smooth source to the impulsive ultra-parabolic equation is investigated and the formal limit is rigorously justified. Our proofs rely on the use of kinetic equations and the compensated compactness method for genuinely nonlinear balance laws.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.