{"title":"On Functions Preserving Products of Certain Classes of Semimetric Spaces","authors":"Mateusz Lichman, P. Nowakowski, Filip Tcroboś","doi":"10.2478/tmmp-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract In the paper, we continue the research of Borsík and Doboš on functions which allow us to introduce a metric to the product of metric spaces. We extend their scope to a broader class of spaces which usually fail to satisfy the triangle inequality, albeit they tend to satisfy some weaker form of this axiom. In particular, we examine the behavior of functions preserving b-metric inequality. We provide analogues of the results of Borsík and Doboš adjusted to the new broader setting. The results we obtained are illustrated with multitude of examples. Furthermore, the connections of newly introduced families of functions with the ones already known from the literature are investigated.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"78 1","pages":"175 - 198"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In the paper, we continue the research of Borsík and Doboš on functions which allow us to introduce a metric to the product of metric spaces. We extend their scope to a broader class of spaces which usually fail to satisfy the triangle inequality, albeit they tend to satisfy some weaker form of this axiom. In particular, we examine the behavior of functions preserving b-metric inequality. We provide analogues of the results of Borsík and Doboš adjusted to the new broader setting. The results we obtained are illustrated with multitude of examples. Furthermore, the connections of newly introduced families of functions with the ones already known from the literature are investigated.