Voltammetric quantification of a nonsteroidal anti-inflammatory agent diflunisal based on the enhancement effect of cationic surfactant on boron-doped diamond electrode
Ertuğrul Keskin, Shabnam Allahverdiyeva, Amer S. Alali, Yavuz Yardım
{"title":"Voltammetric quantification of a nonsteroidal anti-inflammatory agent diflunisal based on the enhancement effect of cationic surfactant on boron-doped diamond electrode","authors":"Ertuğrul Keskin, Shabnam Allahverdiyeva, Amer S. Alali, Yavuz Yardım","doi":"10.20450/MJCCE.2021.2172","DOIUrl":null,"url":null,"abstract":"The present work describes a simple, fast, and inexpensive voltammetric method for diflunisal measurement using a non-modified boron-doped diamond (BDD) electrode. The oxidation of the agent was irreversible and presented a diffusion‐controlled process. The sensitivity of the square wave voltammetric measurements were significantly improved when the cationic surfactant, cetyltrimethylammonium bromide (CTAB), was present in the supporting electrolyte solution. Using square-wave mode, a linear response was obtained for diflunisal quantification in 0.1 mol L-1 phosphate buffer solution (pH 2.5) solution containing 5×10-5 mol L-1 CTAB at +1.07 V (vs. Ag/AgCl) (after 30 s accumulation under open-circuit conditions). Linearity was found for 0.05 to 2.0 μg mL-1 (2.0×10-7-8.0×10-6 mol L-1) with a detection limit 0.013 μg mL-1 (5.2×10-8 mol L-1). The developed approach could be used for the quantification of diflunisal in pharmaceutical formulations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/MJCCE.2021.2172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The present work describes a simple, fast, and inexpensive voltammetric method for diflunisal measurement using a non-modified boron-doped diamond (BDD) electrode. The oxidation of the agent was irreversible and presented a diffusion‐controlled process. The sensitivity of the square wave voltammetric measurements were significantly improved when the cationic surfactant, cetyltrimethylammonium bromide (CTAB), was present in the supporting electrolyte solution. Using square-wave mode, a linear response was obtained for diflunisal quantification in 0.1 mol L-1 phosphate buffer solution (pH 2.5) solution containing 5×10-5 mol L-1 CTAB at +1.07 V (vs. Ag/AgCl) (after 30 s accumulation under open-circuit conditions). Linearity was found for 0.05 to 2.0 μg mL-1 (2.0×10-7-8.0×10-6 mol L-1) with a detection limit 0.013 μg mL-1 (5.2×10-8 mol L-1). The developed approach could be used for the quantification of diflunisal in pharmaceutical formulations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.