INVESTIGATION OF BENDING STRENGTH OF TANNIN IMPREGNATED WOODEN BEAMS AFTER HEAT TREATMENT

IF 0.9 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD
M. Gunes, M. Altunok
{"title":"INVESTIGATION OF BENDING STRENGTH OF TANNIN IMPREGNATED WOODEN BEAMS AFTER HEAT TREATMENT","authors":"M. Gunes, M. Altunok","doi":"10.37763/wr.1336-4561/68.3.444454","DOIUrl":null,"url":null,"abstract":"In this study, the changes in bending strength were investigated by applying heat-treatment to laminated beams modified with acorn tannin to improve the mechanical properties of wooden load-bearing structural members. For this purpose, acorn tannin was impregnated on samples prepared from Scotch pine (Pinus sylvestris L.), oak (Quercus petraea L.), and chestnut (Castanea sativa Mill.) woods. Heat treatment was applied to the samples impregnated with acorn tannin at 150ºC for 3 hours. Untreated, heat-treated, and tannin-modified samples were conditioned until they reached constant weight at 20ºC at 65% relative humidity (RH), 40ºC at 35% RH, and 10ºC at 50% RH. Bending resistance tests were applied to the elements that are conditioned in outdoor conditions according to ISO 13061-3. The results of bilateral interaction between tree species and treatment type were compared, the highest bending strength increase was found in Scotch pine samples by 5% compared to control samples.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/wr.1336-4561/68.3.444454","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the changes in bending strength were investigated by applying heat-treatment to laminated beams modified with acorn tannin to improve the mechanical properties of wooden load-bearing structural members. For this purpose, acorn tannin was impregnated on samples prepared from Scotch pine (Pinus sylvestris L.), oak (Quercus petraea L.), and chestnut (Castanea sativa Mill.) woods. Heat treatment was applied to the samples impregnated with acorn tannin at 150ºC for 3 hours. Untreated, heat-treated, and tannin-modified samples were conditioned until they reached constant weight at 20ºC at 65% relative humidity (RH), 40ºC at 35% RH, and 10ºC at 50% RH. Bending resistance tests were applied to the elements that are conditioned in outdoor conditions according to ISO 13061-3. The results of bilateral interaction between tree species and treatment type were compared, the highest bending strength increase was found in Scotch pine samples by 5% compared to control samples.
单宁浸渍木梁热处理后抗弯强度的研究
在本研究中,通过对橡子单宁改性的层合梁进行热处理,以改善木质承重结构构件的力学性能,研究了弯曲强度的变化。为此,将橡子单宁浸渍在由苏格兰松(Pinus sylvestris L.)、橡树(Quercus petraea L.)和栗子(Castanea sativa Mill.)木材制备的样品上。对用橡子单宁浸渍的样品在150℃下进行热处理3小时。对未处理、热处理和单宁改性的样品进行调节,直到它们在20ºC、65%相对湿度(RH)、40ºC、35%相对湿度和10ºC、50%相对湿度下达到恒定重量。根据ISO 13061-3,对在室外条件下进行调节的元件进行抗弯试验。比较了树种和处理类型之间的双向相互作用结果,发现苏格兰松样品的弯曲强度最高,与对照样品相比增加了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wood Research
Wood Research 工程技术-材料科学:纸与木材
CiteScore
2.40
自引率
15.40%
发文量
81
审稿时长
5.4 months
期刊介绍: Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信