Microindentation testing as a means of predicting lump iron ore physical properties

IF 0.9 Q3 MINING & MINERAL PROCESSING
Michael Peterson
{"title":"Microindentation testing as a means of predicting lump iron ore physical properties","authors":"Michael Peterson","doi":"10.1080/25726641.2023.2165292","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study utilised Vickers and Knoop microindentation testing to characterise the physical and chemical properties of a range of iron ore material types and lump ore samples. Lump ore composite microhardness (CH) and fracture toughness (CFT) correlated best with Tumble and Abrasion Indices and with Fe-total, Al2O3 and LOI contents. General trends were evident between CH/CFT and other common metallurgical indices, e.g. higher Reduction Degradation Index with lower CH. Correlations between ore group CH/CFT and the metallurgical data were generally similar, but relatively stronger, than those for the lump ores. The chemistry of mineralogical-textural sub-sets of ore groups correlated with lump ore CH/CFT. Calculating ore group CH/CFT using a textural method is therefore capable of capturing differences in ore group chemistry that relate in part to texture. A textural database of microhardness and fracture toughness can be utilised with automated optical image analysis to provide geometallurgical characterisation of iron ores.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"132 1","pages":"73 - 86"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2023.2165292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This study utilised Vickers and Knoop microindentation testing to characterise the physical and chemical properties of a range of iron ore material types and lump ore samples. Lump ore composite microhardness (CH) and fracture toughness (CFT) correlated best with Tumble and Abrasion Indices and with Fe-total, Al2O3 and LOI contents. General trends were evident between CH/CFT and other common metallurgical indices, e.g. higher Reduction Degradation Index with lower CH. Correlations between ore group CH/CFT and the metallurgical data were generally similar, but relatively stronger, than those for the lump ores. The chemistry of mineralogical-textural sub-sets of ore groups correlated with lump ore CH/CFT. Calculating ore group CH/CFT using a textural method is therefore capable of capturing differences in ore group chemistry that relate in part to texture. A textural database of microhardness and fracture toughness can be utilised with automated optical image analysis to provide geometallurgical characterisation of iron ores.
微压痕试验作为预测块状铁矿物理性质的一种方法
本研究利用维氏和努氏微压痕测试来表征一系列铁矿石材料类型和块状矿石样品的物理和化学性质。块状矿石复合显微硬度(CH)和断裂韧性(CFT)与翻滚指数、磨损指数、总fe、Al2O3和LOI含量相关性最好。CH/CFT与其他常见冶金指标之间存在明显的总体趋势,即还原降解指数越高,CH越低。矿石组CH/CFT与冶金数据之间的相关性基本相似,但相对于块状矿石的相关性更强。与块状矿CH/CFT相关的矿群矿物结构亚组化学特征。因此,使用结构方法计算矿石组的CH/CFT能够捕捉到部分与结构有关的矿石组化学差异。显微硬度和断裂韧性的纹理数据库可以与自动光学图像分析相结合,提供铁矿石的地质冶金特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信