{"title":"Comparative analysis of validating parameters in the deep learning models for remotely sensed images","authors":"Ravi Kumar, Deepak Kumar","doi":"10.1080/09720529.2022.2068602","DOIUrl":null,"url":null,"abstract":"Abstract The recognition of object in remotely sensed images is a complex task. The immense research is running in the field of remote sensing due to the availability of high resolution satellite images. The detection of object is a challenging task due to the complex background and small object size in remotely sensed images. The object detection in remote sensing images has a vital role in the field of navigation, salvage, and military. The performance of traditional algorithms is very less due to the usage of handcrafted features. With the initiation of Deep Learning algorithms, various Convolutional Neural Networks (CNN) based model have been utilized to detect the objects with high-resolution remotely sensed images. In this research paper various CNN based models has been compared and analyzed. Object detection approaches are broadly categorized in two ways-one based on the region matching and second based on the one-stage target detection. The researchers have compared the result of R-CNN, SPP Net , fast R-CNN, faster R-CNN, R-FCN, Mask R-CNN SSD (Single Shot Multibox Detector), DSSD (Deconvolution Single Shot Multibox Detector), FSSD , YOLO v1,YOLO v2, YOLO v3, Gaussian YOLO v3, RetinaNet which conclude that the minimal average precision for the region based category is best shown by Mask R-CNN with 39.8 mAP in the COCO parameter test and for the one stage detector YOLO v3 shows the best case for the COCO parameter test with 69.1 mAP. In the second phase of the review the researchers found that in comparison to the region based and one stage detector the YOLO v3 model from one stage detector shows the best detection precision percentage with the highest 87% in identifying the object called ship.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2068602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The recognition of object in remotely sensed images is a complex task. The immense research is running in the field of remote sensing due to the availability of high resolution satellite images. The detection of object is a challenging task due to the complex background and small object size in remotely sensed images. The object detection in remote sensing images has a vital role in the field of navigation, salvage, and military. The performance of traditional algorithms is very less due to the usage of handcrafted features. With the initiation of Deep Learning algorithms, various Convolutional Neural Networks (CNN) based model have been utilized to detect the objects with high-resolution remotely sensed images. In this research paper various CNN based models has been compared and analyzed. Object detection approaches are broadly categorized in two ways-one based on the region matching and second based on the one-stage target detection. The researchers have compared the result of R-CNN, SPP Net , fast R-CNN, faster R-CNN, R-FCN, Mask R-CNN SSD (Single Shot Multibox Detector), DSSD (Deconvolution Single Shot Multibox Detector), FSSD , YOLO v1,YOLO v2, YOLO v3, Gaussian YOLO v3, RetinaNet which conclude that the minimal average precision for the region based category is best shown by Mask R-CNN with 39.8 mAP in the COCO parameter test and for the one stage detector YOLO v3 shows the best case for the COCO parameter test with 69.1 mAP. In the second phase of the review the researchers found that in comparison to the region based and one stage detector the YOLO v3 model from one stage detector shows the best detection precision percentage with the highest 87% in identifying the object called ship.