Strongly Compact Cardinals and Ordinal Definability

IF 0.9 1区 数学 Q1 LOGIC
G. Goldberg
{"title":"Strongly Compact Cardinals and Ordinal Definability","authors":"G. Goldberg","doi":"10.1142/s0219061322500106","DOIUrl":null,"url":null,"abstract":"This paper explores several topics related to Woodin’s HOD conjecture. We improve the large cardinal hypothesis of Woodin’s HOD dichotomy theorem from an extendible cardinal to a strongly compact cardinal. We show that assuming there is a strongly compact cardinal and the HOD hypothesis holds, there is no elementary embedding from HOD to HOD, settling a question of Woodin. We show that the HOD hypothesis is equivalent to a uniqueness property of elementary embeddings of levels of the cumulative hierarchy. We prove that the HOD hypothesis holds if and only if every regular cardinal above the first strongly compact cardinal carries an ordinal definable ([Formula: see text])-Jónsson algebra. We show that if the HOD hypothesis holds and HOD satisfies the Ultrapower Axiom, then every supercompact cardinal is supercompact in HOD.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500106","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores several topics related to Woodin’s HOD conjecture. We improve the large cardinal hypothesis of Woodin’s HOD dichotomy theorem from an extendible cardinal to a strongly compact cardinal. We show that assuming there is a strongly compact cardinal and the HOD hypothesis holds, there is no elementary embedding from HOD to HOD, settling a question of Woodin. We show that the HOD hypothesis is equivalent to a uniqueness property of elementary embeddings of levels of the cumulative hierarchy. We prove that the HOD hypothesis holds if and only if every regular cardinal above the first strongly compact cardinal carries an ordinal definable ([Formula: see text])-Jónsson algebra. We show that if the HOD hypothesis holds and HOD satisfies the Ultrapower Axiom, then every supercompact cardinal is supercompact in HOD.
强紧基数与序数可定义性
本文探讨了与Woodin HOD猜想有关的几个问题。我们将Woodin的HOD二分法定理的大基数假设从可扩展基数改进为强紧基数。我们证明,假设存在一个强紧致基数,并且HOD假设成立,则从HOD到HOD不存在初等嵌入,从而解决了Woodin的一个问题。我们证明了HOD假设等价于累积层次层次的初等嵌入的唯一性性质。我们证明了HOD假设成立,当且仅当第一个强紧致基数之上的每个正则基数都带有一个序数可定义的([公式:见正文])-Jónsson代数。我们证明,如果HOD假设成立,并且HOD满足超幂公理,那么HOD中的每个超紧基数都是超紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信