Inverted Topp-Leone Distribution: Contribution to a Family of J-Shaped Frequency Functions in Presence of Random Censoring

H. Muhammed, E. A. Muhammed
{"title":"Inverted Topp-Leone Distribution: Contribution to a Family of J-Shaped Frequency Functions in Presence of Random Censoring","authors":"H. Muhammed, E. A. Muhammed","doi":"10.13052/10.13052/jrss0974-8024.14212","DOIUrl":null,"url":null,"abstract":"In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-Leone distribution shape parameter are studied when the sample is complete and random censored. The maximum likelihood estimator (MLE) and Bayes estimator of the unknown parameter are proposed. The Bayes estimates (BEs) have been computed based on the squared error loss (SEL) function and using Markov Chain Monte Carlo (MCMC) techniques. The asymptotic, bootstrap (p,t), and highest posterior density intervals are computed. The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte Carlo simulation is performed to compare the performances of the proposed methods and one real data set has been analyzed for illustrative purposes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/10.13052/jrss0974-8024.14212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-Leone distribution shape parameter are studied when the sample is complete and random censored. The maximum likelihood estimator (MLE) and Bayes estimator of the unknown parameter are proposed. The Bayes estimates (BEs) have been computed based on the squared error loss (SEL) function and using Markov Chain Monte Carlo (MCMC) techniques. The asymptotic, bootstrap (p,t), and highest posterior density intervals are computed. The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte Carlo simulation is performed to compare the performances of the proposed methods and one real data set has been analyzed for illustrative purposes.
分享
查看原文
倒Topp-Leone分布:对存在随机滤波的j形频率函数族的贡献
本文研究了样本完全随机截尾情况下倒Topp-Leone分布形状参数的贝叶斯和非贝叶斯估计。提出了未知参数的最大似然估计量和贝叶斯估计量。贝叶斯估计(BEs)是基于平方误差损失(SEL)函数并使用马尔可夫链蒙特卡罗(MCMC)技术计算的。计算了渐近、bootstrap(p,t)和最高后验密度区间。针对贝叶斯估计,提出了Metropolis Hasting算法。进行蒙特卡罗模拟以比较所提出的方法的性能,并分析了一个真实数据集以便于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信