Ancient low-entropy flows, mean-convex neighborhoods, and uniqueness

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
K. Choi, Robert Haslhofer, Or Hershkovits
{"title":"Ancient low-entropy flows, mean-convex neighborhoods, and uniqueness","authors":"K. Choi, Robert Haslhofer, Or Hershkovits","doi":"10.4310/acta.2022.v228.n2.a1","DOIUrl":null,"url":null,"abstract":"In this article, we prove the mean convex neighborhood conjecture for the mean curvature flow of surfaces in $\\mathbb{R}^3$. Namely, if the flow has a spherical or cylindrical singularity at a space-time point $X=(x,t)$, then there exists a positive $\\varepsilon=\\varepsilon(X)>0$ such that the flow is mean convex in a space-time neighborhood of size $\\varepsilon$ around $X$. The major difficulty is to promote the infinitesimal information about the singularity to a conclusion of macroscopic size. In fact, we prove a more general classification result for all ancient low entropy flows that arise as potential limit flows near $X$. Namely, we prove that any ancient, unit-regular, cyclic, integral Brakke flow in $\\mathbb{R}^3$ with entropy at most $\\sqrt{2\\pi/e}+\\delta$ is either a flat plane, a round shrinking sphere, a round shrinking cylinder, a translating bowl soliton, or an ancient oval. As an application, we prove the uniqueness conjecture for mean curvature flow through spherical or cylindrical singularities. In particular, assuming Ilmanen's multiplicity one conjecture, we conclude that for embedded two-spheres the mean curvature flow through singularities is well-posed.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2022.v228.n2.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 53

Abstract

In this article, we prove the mean convex neighborhood conjecture for the mean curvature flow of surfaces in $\mathbb{R}^3$. Namely, if the flow has a spherical or cylindrical singularity at a space-time point $X=(x,t)$, then there exists a positive $\varepsilon=\varepsilon(X)>0$ such that the flow is mean convex in a space-time neighborhood of size $\varepsilon$ around $X$. The major difficulty is to promote the infinitesimal information about the singularity to a conclusion of macroscopic size. In fact, we prove a more general classification result for all ancient low entropy flows that arise as potential limit flows near $X$. Namely, we prove that any ancient, unit-regular, cyclic, integral Brakke flow in $\mathbb{R}^3$ with entropy at most $\sqrt{2\pi/e}+\delta$ is either a flat plane, a round shrinking sphere, a round shrinking cylinder, a translating bowl soliton, or an ancient oval. As an application, we prove the uniqueness conjecture for mean curvature flow through spherical or cylindrical singularities. In particular, assuming Ilmanen's multiplicity one conjecture, we conclude that for embedded two-spheres the mean curvature flow through singularities is well-posed.
古代低熵流、均值凸邻域和唯一性
本文证明了$\mathbb{R}^3$中曲面平均曲率流的平均凸邻域猜想。即,如果流动在时空点$X=(x,t)$处具有球形或圆柱形奇点,则存在一个正的$\varepsilon=\varepsilon(X)>0$,使得该流动在$X$周围大小为$\varepsilon$的时空邻域内为平均凸。主要的困难是将关于奇点的无穷小信息推广到宏观尺寸的结论。事实上,我们证明了一个更一般的分类结果,所有古老的低熵流出现在$X$附近的潜在极限流。也就是说,我们证明了在$\mathbb{R}^3$中熵最多为$\sqrt{2\pi/e}+\delta$的任何古老的、单位规则的、循环的、积分的Brakke流要么是一个平面,要么是一个圆形的收缩球,要么是一个圆形的收缩圆柱,要么是一个平移碗孤子,要么是一个古老的椭圆形。作为应用,我们证明了平均曲率流通过球面或柱面奇点的唯一性猜想。特别地,在假设Ilmanen多重性一猜想的情况下,我们得出对于嵌入的两球,通过奇异点的平均曲率流是适定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信