Effect of Magnetohydrodynamic on Cutaneous Wound Healing in Rat Model

IF 0.4 Q4 NEUROSCIENCES
M. Safari, M. Karimkhan-zand, N. Fakhraei, F. Mohammadi, F. Nili, Faranak Eivazi, Abbas Norouzi Javidan, Akbar Khodaei, A. Dehpour
{"title":"Effect of Magnetohydrodynamic on Cutaneous Wound Healing in Rat Model","authors":"M. Safari, M. Karimkhan-zand, N. Fakhraei, F. Mohammadi, F. Nili, Faranak Eivazi, Abbas Norouzi Javidan, Akbar Khodaei, A. Dehpour","doi":"10.5812/ans.118387","DOIUrl":null,"url":null,"abstract":"Background: Exogenous electrical stimulation of the skin may mimic its endogenous bioelectric currents. In this study, a combination of direct current (DC) and magnetic field (MF) was investigated in the excision of the rat wound model. Methods: A circular wound was created on the posterior of the neck, and an electrode was fixed in the wound center. Rats were divided into sham, DC (600 µA), MF (~0.8 T), and magnet-direct current (MDC) groups. The study was conducted in 14 days with 20-min treatment daily. Results: The DC and MDC groups had higher healing percentages (P < 0.01) with mean differences of -13.42 and -15.63, respectively. Direct current on days 2, 5, and 6, and MDC on days 8, 9, 10, 11, 12, and 13 showed higher wound closing. In the DC-treated group, angiogenesis was improved on day 7. In MDC-treated rats, angiogenesis and fibroplasia were improved on day 13. The MF and MDC groups had lower granulation thicknesses on day 7. Granulation thickness increased on day 13 in the MF and MDC groups, while it decreased in the DC group. Direct current treatment improved healing in the first half of the study period, whereas MDC enhanced it in the second half, overtaking DC. From day 7, the magnet group started to overtake the control group slightly in the last four days. Conclusions: To accelerate wound healing, we suggest applying DC in the first days of wounding and MDC in the following days.","PeriodicalId":43970,"journal":{"name":"Archives of Neuroscience","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ans.118387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Exogenous electrical stimulation of the skin may mimic its endogenous bioelectric currents. In this study, a combination of direct current (DC) and magnetic field (MF) was investigated in the excision of the rat wound model. Methods: A circular wound was created on the posterior of the neck, and an electrode was fixed in the wound center. Rats were divided into sham, DC (600 µA), MF (~0.8 T), and magnet-direct current (MDC) groups. The study was conducted in 14 days with 20-min treatment daily. Results: The DC and MDC groups had higher healing percentages (P < 0.01) with mean differences of -13.42 and -15.63, respectively. Direct current on days 2, 5, and 6, and MDC on days 8, 9, 10, 11, 12, and 13 showed higher wound closing. In the DC-treated group, angiogenesis was improved on day 7. In MDC-treated rats, angiogenesis and fibroplasia were improved on day 13. The MF and MDC groups had lower granulation thicknesses on day 7. Granulation thickness increased on day 13 in the MF and MDC groups, while it decreased in the DC group. Direct current treatment improved healing in the first half of the study period, whereas MDC enhanced it in the second half, overtaking DC. From day 7, the magnet group started to overtake the control group slightly in the last four days. Conclusions: To accelerate wound healing, we suggest applying DC in the first days of wounding and MDC in the following days.
磁流体力学对大鼠皮肤创面愈合的影响
背景:外源性电刺激皮肤可以模拟其内源性生物电流。本研究采用直流电(DC)和磁场(MF)联合作用对大鼠创伤模型的切除进行了研究。方法:在颈部后侧造圆形创面,在创面中心固定电极。大鼠分为假手术组、直流电组(600µA)、中频组(~0.8 T)和磁直流组(MDC)。研究持续14天,每天治疗20分钟。结果:DC组和MDC组愈合率较高(P < 0.01),平均差异分别为-13.42和-15.63。直流电在第2、5、6天,MDC在第8、9、10、11、12、13天的创面闭合较高。dc治疗组血管生成在第7天得到改善。mdc处理大鼠,血管生成和纤维增生在第13天得到改善。第7天,MF组和MDC组肉芽组织厚度较低。第13天,MF组和MDC组肉芽肿厚度增加,DC组肉芽肿厚度减少。直流电治疗在研究期间的前半段改善了愈合,而MDC在后半段改善了愈合,超过了DC。从第7天开始,磁铁组在最后4天开始略微超过对照组。结论:加速伤口愈合,我们建议采用直流在第一天的受伤和MDC在接下来的几天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Neuroscience
Archives of Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
32
期刊介绍: Archives of neuroscience is a clinical and basic journal which is informative to all practitioners like Neurosurgeons, Neurologists, Psychiatrists, Neuroscientists. It is the official journal of Brain and Spinal Injury Research Center. The Major theme of this journal is to follow the path of scientific collaboration, spontaneity, and goodwill for the future, by providing up-to-date knowledge for the readers. The journal aims at covering different fields, as the name implies, ranging from research in basic and clinical sciences to core topics such as patient care, education, procuring and correct utilization of resources and bringing to limelight the cherished goals of the institute in providing a standard care for the physically disabled patients. This quarterly journal offers a venue for our researchers and scientists to vent their innovative and constructive research works. The scope of the journal is as far wide as the universe as being declared by the name of the journal, but our aim is to pursue our sacred goals in providing a panacea for the intractable ailments, which leave a psychological element in the daily life of such patients. This authoritative clinical and basic journal was founded by Professor Madjid Samii in 2012.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信