On the eigenvalues of matrices with common Gershgorin regions

Pub Date : 2022-04-06 DOI:10.13001/ela.2022.6025
Anna Davis, P. Zachlin
{"title":"On the eigenvalues of matrices with common Gershgorin regions","authors":"Anna Davis, P. Zachlin","doi":"10.13001/ela.2022.6025","DOIUrl":null,"url":null,"abstract":"This paper is a study of the eigenvalues of a complex square matrix with one variable nondiagonal entry expressed in polar form. Changing the angle of the variable entry while leaving the radius fixed generates an algebraic curve; as does the process of fixing an angle and varying the radius. The authors refer to these two curves as eigenvalue orbits and eigenvalue trajectories, respectively. Eigenvalue orbits and trajectories are orthogonal families of curves, and eigenvalue orbits are sets of eigenvalues from matrices with identical Gershgorin regions. Algebraic and geometric properties of both types of curves are examined. Features such as poles, singularities, and foci are discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a study of the eigenvalues of a complex square matrix with one variable nondiagonal entry expressed in polar form. Changing the angle of the variable entry while leaving the radius fixed generates an algebraic curve; as does the process of fixing an angle and varying the radius. The authors refer to these two curves as eigenvalue orbits and eigenvalue trajectories, respectively. Eigenvalue orbits and trajectories are orthogonal families of curves, and eigenvalue orbits are sets of eigenvalues from matrices with identical Gershgorin regions. Algebraic and geometric properties of both types of curves are examined. Features such as poles, singularities, and foci are discussed.
分享
查看原文
具有共同Gershgorin域的矩阵的特征值
本文研究了具有一个以极形式表示的变量非对角项的复平方矩阵的特征值。在半径不变的情况下,改变变量项的角度会生成一条代数曲线;固定角度和改变半径的过程也是如此。作者将这两条曲线分别称为特征值轨道和特征值轨迹。特征值轨道和轨迹是正交的曲线族,特征值轨道是来自具有相同Gershgorin区域的矩阵的特征值集。研究了这两类曲线的代数性质和几何性质。讨论了极点、奇点和焦点等特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信