A homogenised model for the motion of evaporating fronts in porous media

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
E. Luckins, C. Breward, I. Griffiths, C. Please
{"title":"A homogenised model for the motion of evaporating fronts in porous media","authors":"E. Luckins, C. Breward, I. Griffiths, C. Please","doi":"10.1017/s0956792522000419","DOIUrl":null,"url":null,"abstract":"\n Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale processes to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required for these homogenised models. In this paper, we derive a homogenised model, including effective interface conditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas flow and the advective–diffusive transport of material. We investigate the effect that different microscale models describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify a new effective parameter, \n \n \n \n$\\mathcal{L}$\n\n \n , the average microscale interface length, which modifies the effective evaporation rate in the homogenised model. Like the effective diffusivity and permeability of a porous medium, \n \n \n \n$\\mathcal{L}$\n\n \n may be found by solving a periodic cell problem on the microscale. We also show that the different microscale models of the interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale processes to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required for these homogenised models. In this paper, we derive a homogenised model, including effective interface conditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas flow and the advective–diffusive transport of material. We investigate the effect that different microscale models describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify a new effective parameter, $\mathcal{L}$ , the average microscale interface length, which modifies the effective evaporation rate in the homogenised model. Like the effective diffusivity and permeability of a porous medium, $\mathcal{L}$ may be found by solving a periodic cell problem on the microscale. We also show that the different microscale models of the interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.
多孔介质中蒸发锋运动的均匀化模型
多孔介质中的蒸发是一个多尺度和界面驱动的过程,因为孔隙中蒸发界面的相变产生了蒸汽流,并且依赖于蒸汽通过多孔介质的输送。虽然多孔介质中流动和化学输运的均质模型可以有效地模拟多尺度过程,但尚不清楚多尺度效应如何影响这些均质模型所需的界面条件。在本文中,我们推导了一个均匀化模型,包括有效的界面条件,蒸发锋通过多孔介质的运动,使用均匀化和边界层分析相结合。这一分析扩展了以前对纯扩散问题的研究,使之包括气体流动和物质的顺向扩散输运。我们研究了描述蒸发化学过程的不同微尺度模型对均质界面条件的影响。特别地,我们确定了一个新的有效参数$\mathcal{L}$,即平均微尺度界面长度,它改变了均匀化模型中的有效蒸发速率。与多孔介质的有效扩散率和渗透率一样,$\mathcal{L}$可以通过在微观尺度上求解周期细胞问题来求得。我们还表明,界面化学的不同微尺度模型导致界面上和界面附近的细微尺度行为根本不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信