A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaewook Shin, J. Seo, Riley Yaylian, A. Huang, Y. Meng
{"title":"A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems","authors":"Jaewook Shin, J. Seo, Riley Yaylian, A. Huang, Y. Meng","doi":"10.1080/09506608.2019.1653520","DOIUrl":null,"url":null,"abstract":"ABSTRACT The demand for the large-scale storage system has gained much interest. Among all the criteria for the large-scale electrical energy storage systems (EESSs), low cost ($ k Wh−1) is the focus where MnO2-based electrochemistry can be a competitive candidate. It is notable that MnO2 is one of the few materials that can be employed in various fields of EESSs: alkaline battery, supercapacitor, aqueous rechargeable lithium-ion battery, and metal-air battery. Yet, the technology still has bottlenecks and is short of commercialisation. Discovering key parameters impacting the energy storage and developing systematic characterisation methods for the MnO2 systems can benefit a wide spectrum of energy requirements. In this review, history, mechanism, bottlenecks, and solutions for using MnO2 in the four EESSs are summarised and future directions involving more in-depth mechanism studies are suggested.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"65 1","pages":"356 - 387"},"PeriodicalIF":16.8000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2019.1653520","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2019.1653520","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 107

Abstract

ABSTRACT The demand for the large-scale storage system has gained much interest. Among all the criteria for the large-scale electrical energy storage systems (EESSs), low cost ($ k Wh−1) is the focus where MnO2-based electrochemistry can be a competitive candidate. It is notable that MnO2 is one of the few materials that can be employed in various fields of EESSs: alkaline battery, supercapacitor, aqueous rechargeable lithium-ion battery, and metal-air battery. Yet, the technology still has bottlenecks and is short of commercialisation. Discovering key parameters impacting the energy storage and developing systematic characterisation methods for the MnO2 systems can benefit a wide spectrum of energy requirements. In this review, history, mechanism, bottlenecks, and solutions for using MnO2 in the four EESSs are summarised and future directions involving more in-depth mechanism studies are suggested.
电能存储系统水电解质中MnO2的机理理解综述
摘要对大规模存储系统的需求已经引起了人们的极大兴趣。在大型电能存储系统(EESS)的所有标准中,低成本($k Wh−1)是基于MnO2的电化学可以成为竞争候选者的焦点。值得注意的是,MnO2是少数可用于EESS各个领域的材料之一:碱性电池、超级电容器、水性可充电锂离子电池和金属-空气电池。然而,这项技术仍然存在瓶颈,缺乏商业化。发现影响能量存储的关键参数并开发MnO2系统的系统表征方法可以有利于广泛的能量需求。在这篇综述中,总结了在四种EESS中使用MnO2的历史、机制、瓶颈和解决方案,并提出了涉及更深入机制研究的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信