Local energy optimality of periodic sets

IF 1.2 3区 数学 Q1 MATHEMATICS
R. Coulangeon, Achill Schurmann
{"title":"Local energy optimality of periodic sets","authors":"R. Coulangeon, Achill Schurmann","doi":"10.4310/CNTP.2021.v15.n3.a2","DOIUrl":null,"url":null,"abstract":"We study the local optimality of periodic point sets in $\\mathbb{R}^n$ for energy minimization in the Gaussian core model, that is, for radial pair potential functions $f_c(r)=e^{-c r}$ with $c>0$. By considering suitable parameter spaces for $m$-periodic sets, we can locally rigorously analyze the energy of point sets, within the family of periodic sets having the same point density. We derive a characterization of periodic point sets being $f_c$-critical for all $c$ in terms of weighted spherical $2$-designs contained in the set. Especially for $2$-periodic sets like the family $\\mathsf{D}^+_n$ we obtain expressions for the hessian of the energy function, allowing to certify $f_c$-optimality in certain cases. For odd integers $n\\geq 9$ we can hereby in particular show that $\\mathsf{D}^+_n$ is locally $f_c$-optimal among periodic sets for all sufficiently large~$c$.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2021.v15.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

We study the local optimality of periodic point sets in $\mathbb{R}^n$ for energy minimization in the Gaussian core model, that is, for radial pair potential functions $f_c(r)=e^{-c r}$ with $c>0$. By considering suitable parameter spaces for $m$-periodic sets, we can locally rigorously analyze the energy of point sets, within the family of periodic sets having the same point density. We derive a characterization of periodic point sets being $f_c$-critical for all $c$ in terms of weighted spherical $2$-designs contained in the set. Especially for $2$-periodic sets like the family $\mathsf{D}^+_n$ we obtain expressions for the hessian of the energy function, allowing to certify $f_c$-optimality in certain cases. For odd integers $n\geq 9$ we can hereby in particular show that $\mathsf{D}^+_n$ is locally $f_c$-optimal among periodic sets for all sufficiently large~$c$.
周期集的局部能量最优性
我们研究了高斯核模型中能量最小化的$\mathbb{R}^n$中周期点集的局部最优性,即,对于$c>0$的径向对势函数$f_c(R)=e^{-cr}$。通过考虑$m$-周期集的合适参数空间,我们可以在具有相同点密度的周期集族中局部严格地分析点集的能量。根据集合中包含的加权球面$2$-设计,我们导出了对所有$c$都是$f_c$-关键的周期点集的特征。特别是对于像$\mathsf{D}^+_n$族这样的$2$-周期集,我们获得了能量函数的hessian表达式,允许在某些情况下证明$f_c$-最优性。对于奇整数$n\geq9$,我们可以特别证明$\mathsf{D}^+_n$在所有足够大的~$c$的周期集中是局部$f_c$最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信