{"title":"Numerical Solution of MHD Casson Fluid Flow Due to a Moving Extensible Surface with Second-Order Velocity Slip and Carbon Nanotubes","authors":"R. R. Reddy, Bala Anki Reddy Polu","doi":"10.24423/ENGTRANS.890.20180827","DOIUrl":null,"url":null,"abstract":"This theoretical research work deals with the effect of aligned magnetic field flow and heat transfer of carbon nanotubes towards a nonlinear stretching sheet. In addition, we have considered two kinds of carbon nanotubes, namely SWCNTs and MWCNTs, used with water as the base fluid. The governing boundary layer flow equations narrating partial differential equations are transformed into a system of ordinary differential equations with the assistance of similarity transformation. Obtained coupled non-linear differential equations are solved by fourth-order Runge-Kutta (R-K) method along with shooting technique. A comparative study of the formerly published results and the present results for a special case shows that all these results are in an excellent agreement.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"66 1","pages":"263-279"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.890.20180827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
This theoretical research work deals with the effect of aligned magnetic field flow and heat transfer of carbon nanotubes towards a nonlinear stretching sheet. In addition, we have considered two kinds of carbon nanotubes, namely SWCNTs and MWCNTs, used with water as the base fluid. The governing boundary layer flow equations narrating partial differential equations are transformed into a system of ordinary differential equations with the assistance of similarity transformation. Obtained coupled non-linear differential equations are solved by fourth-order Runge-Kutta (R-K) method along with shooting technique. A comparative study of the formerly published results and the present results for a special case shows that all these results are in an excellent agreement.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.