{"title":"Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions","authors":"M. Asaduzzaman, Md. Zulfikar Ali","doi":"10.24193/fpt-ro.2022.1.08","DOIUrl":null,"url":null,"abstract":". In this article, the existence criteria of at least one or at least three positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions has been established. The method applied in this study is formulated by the well-known Guo-Krasnoselskii’s fixed point theorem and Leggett-Williams fixed point theorem. First, the Green’s function for corresponding linear fractional differential equation of the main nonlinear fractional differential equation under same boundary value conditions has been constructed. Next, several essential properties of that Green’s function have been proved. Finally, in cone spaces some new existence and multiplicity results for the Caputo-type nonlinear fractional differential equation with integral boundary value conditions are obtained. To support the analytic proof appropriate illustrative examples has also been discussed.","PeriodicalId":51051,"journal":{"name":"Fixed Point Theory","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2022.1.08","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
. In this article, the existence criteria of at least one or at least three positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions has been established. The method applied in this study is formulated by the well-known Guo-Krasnoselskii’s fixed point theorem and Leggett-Williams fixed point theorem. First, the Green’s function for corresponding linear fractional differential equation of the main nonlinear fractional differential equation under same boundary value conditions has been constructed. Next, several essential properties of that Green’s function have been proved. Finally, in cone spaces some new existence and multiplicity results for the Caputo-type nonlinear fractional differential equation with integral boundary value conditions are obtained. To support the analytic proof appropriate illustrative examples has also been discussed.
期刊介绍:
Fixed Point Theory publishes relevant research and expository papers devoted to the all topics of fixed point theory and applications in all structured set (algebraic, metric, topological (general and algebraic), geometric (synthetic, analytic, metric, differential, topological), ...) and in category theory. Applications to ordinary differential equations, partial differential equations, functional equations, integral equations, mathematical physics, mathematical chemistry, mathematical biology, mathematical economics, mathematical finances, informatics, ..., are also welcome.