Mutual influence of the faces contact area and the pre-fracture zone near the tip of the interfacial crack

IF 0.4 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M. Dudyk
{"title":"Mutual influence of the faces contact area and the pre-fracture zone near the tip of the interfacial crack","authors":"M. Dudyk","doi":"10.3233/sfc-204003","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Under plane strain conditions, a crack model was developed on a plane interface between two different materials, which assumes the existence near its tip of the faces contact area and a narrow lateral pre-fracture zone in a less crack-resistant material of the composite compound. The pre-fracture zone is modeled by the line of normal displacement rupture, on which the normal stress is equal to the tensile strength of the material. Assuming that the dimensions of the pre-fracture zone and the contact zone have the same order of magnitude and are significantly smaller than the crack length, the problem is reduced to the vector Wiener–Hopf equation. METHODS: An approximate method for solving the vector Wiener–Hopf equation was developed, which was used to obtain the equations for determining the sizes of the pre-fracture zone and the contact faces area. The pre-fracture zone orientation was determined from the condition of the potential energy maximum accumulated in the zone. Numerical calculations of the indicated parameters and analysis of their dependences on the configuration and module of external load are executed. RESULTS: A significant mutual influence of the pre-fracture zone and crack faces contact on their sizes and orientation of the zone was revealed.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/sfc-204003","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-204003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

Abstract

BACKGROUND: Under plane strain conditions, a crack model was developed on a plane interface between two different materials, which assumes the existence near its tip of the faces contact area and a narrow lateral pre-fracture zone in a less crack-resistant material of the composite compound. The pre-fracture zone is modeled by the line of normal displacement rupture, on which the normal stress is equal to the tensile strength of the material. Assuming that the dimensions of the pre-fracture zone and the contact zone have the same order of magnitude and are significantly smaller than the crack length, the problem is reduced to the vector Wiener–Hopf equation. METHODS: An approximate method for solving the vector Wiener–Hopf equation was developed, which was used to obtain the equations for determining the sizes of the pre-fracture zone and the contact faces area. The pre-fracture zone orientation was determined from the condition of the potential energy maximum accumulated in the zone. Numerical calculations of the indicated parameters and analysis of their dependences on the configuration and module of external load are executed. RESULTS: A significant mutual influence of the pre-fracture zone and crack faces contact on their sizes and orientation of the zone was revealed.
界面裂纹尖端附近的面接触区和断裂前区的相互影响
背景:在平面应变条件下,在两种不同材料之间的平面界面上建立了裂纹模型,该模型假设复合材料的抗裂性较差的材料在其接触区尖端附近存在狭窄的侧向预断裂区。断裂前区采用法向位移破裂线模拟,法向应力等于材料的抗拉强度。假设断裂前区和接触区尺寸具有相同的数量级,且明显小于裂纹长度,则将问题简化为矢量Wiener-Hopf方程。方法:建立了求解矢量Wiener-Hopf方程的近似方法,利用该方法得到了确定断裂前带尺寸和接触面面积的方程。根据断裂前区域累积势能最大的条件确定断裂前区域的方位。对所示参数进行了数值计算,并分析了它们与外载荷结构和模块的关系。结果:断裂前带与裂隙面接触对断裂前带的大小和走向有显著的相互影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strength Fracture and Complexity
Strength Fracture and Complexity MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信