Existence and asymptotic behavior of non-normal conformal metrics on ℝ4 with sign-changing Q-curvature

IF 1.2 2区 数学 Q1 MATHEMATICS
C. Bernardini
{"title":"Existence and asymptotic behavior of non-normal conformal metrics on ℝ4 with sign-changing Q-curvature","authors":"C. Bernardini","doi":"10.1142/S0219199722500535","DOIUrl":null,"url":null,"abstract":"We consider the following prescribed $Q$-curvature problem \\begin{equation}\\label{uno} \\begin{cases} \\Delta^2 u=(1-|x|^p)e^{4u}, \\quad\\text{on}\\,\\,\\mathbb{R}^4\\\\ \\Lambda:=\\int_{\\mathbb{R}^4}(1-|x|^p)e^{4u}dx<\\infty. \\end{cases} \\end{equation} We show that for every polynomial $P$ of degree 2 such that $\\lim\\limits_{|x|\\to+\\infty}P=-\\infty$, and for every $\\Lambda\\in(0,\\Lambda_\\mathrm{sph})$, there exists at least one solution which assume the form $u=w+P$, where $w$ behaves logarithmically at infinity. Conversely, we prove that all solutions have the form $v+P$, where $$v(x)=\\frac{1}{8\\pi^2}\\int\\limits_{\\mathbb{R}^4}\\log\\left(\\frac{|y|}{|x-y|}\\right)(1-|y|^p)e^{4u}dy$$ and $P$ is a polynomial of degree at most 2 bounded from above. Moreover, if $u$ is a solution to the previous problem, it has the following asymptotic behavior $$u(x)=-\\frac{\\Lambda}{8\\pi^2}\\log|x|+P+o(\\log|x|),\\quad\\text{as}\\,\\,|x|\\to+\\infty.$$ As a consequence, we give a geometric characterization of solutions in terms of the scalar curvature at infinity of the associated conformal metric $e^{2u}|dx|^2$.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219199722500535","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following prescribed $Q$-curvature problem \begin{equation}\label{uno} \begin{cases} \Delta^2 u=(1-|x|^p)e^{4u}, \quad\text{on}\,\,\mathbb{R}^4\\ \Lambda:=\int_{\mathbb{R}^4}(1-|x|^p)e^{4u}dx<\infty. \end{cases} \end{equation} We show that for every polynomial $P$ of degree 2 such that $\lim\limits_{|x|\to+\infty}P=-\infty$, and for every $\Lambda\in(0,\Lambda_\mathrm{sph})$, there exists at least one solution which assume the form $u=w+P$, where $w$ behaves logarithmically at infinity. Conversely, we prove that all solutions have the form $v+P$, where $$v(x)=\frac{1}{8\pi^2}\int\limits_{\mathbb{R}^4}\log\left(\frac{|y|}{|x-y|}\right)(1-|y|^p)e^{4u}dy$$ and $P$ is a polynomial of degree at most 2 bounded from above. Moreover, if $u$ is a solution to the previous problem, it has the following asymptotic behavior $$u(x)=-\frac{\Lambda}{8\pi^2}\log|x|+P+o(\log|x|),\quad\text{as}\,\,|x|\to+\infty.$$ As a consequence, we give a geometric characterization of solutions in terms of the scalar curvature at infinity of the associated conformal metric $e^{2u}|dx|^2$.
带变号q曲率的非正态共形度量的存在性和渐近性
我们考虑以下规定的$Q$-曲率问题\ begin{equation}\ label{uno}\ begin{cases}\Delta ^2 u=(1-|x|^p)e ^{4u},\ quad\text{on}\,\,\ mathbb{R}^4\\Lambda:=\ int_^{4u}dx<\infty。\end{cases}\end{equation}我们证明,对于每一个2次多项式$P$,使得$\lim\limits_{|x|\to+\infty}P=-\infty$,并且对于(0,\Lambda_\mathrm{sph})$中的每一个$\Lambda\,至少存在一个形式为$u=w+P$的解,其中$w$在无穷大处表现为对数。相反,我们证明了所有解的形式为$v+P$,其中$$v(x)=\frac{1}{8\pi^2}/int\limits_{\mathbb{R}^4}\log\left(\frac{|y|}{|x-y|}\right)(1-|y|^P)e^{4u}dy$$和$P$是从上面有界的至多2次多项式。此外,如果$u$是前一个问题的解,它具有以下渐近行为$$u(x)=-\frac{\Lambda}{8\pi^2}\log|x|+P+o(\log|x |),\quad\text{as}\,\,|x|\to+\infty。$$因此,我们根据相关共形度量$e^{2u}|dx|^2$的无穷远标量曲率给出了解的几何特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信