Yun Zhang, C. Xin, Zeming Wang, Waqas Mughal, Yadong He
{"title":"The foaming performance evaluation of fibrillated polytetrafluoroethylene and isotactic polypropylene blends","authors":"Yun Zhang, C. Xin, Zeming Wang, Waqas Mughal, Yadong He","doi":"10.1177/0262489319846785","DOIUrl":null,"url":null,"abstract":"Polypropylene (PP) foamed products have the advantages of heat and chemical resistance, but it is difficult to foam without modified PP. Traditionally, researchers have used chemical modification to increase the melt strength to improve the foaming properties of PP. In this article, we designed four kinds of screw combinations, and five regions are selected for sampling. The polytetrafluoroethylene (PTFE) and isotactic polypropylene (iPP) were blended by one-step fiber forming method, and then we tested the rheological properties and foaming properties. It is found that the rheological properties of the in situ microfiber composite are significantly improved than the iPP, and the crystallization temperature is also increased. The foaming experiment of the composite showed that the foaming performance of the composite with in situ microfiber morphology was significantly improved compared with the pure iPP performance, and the foaming temperature window of iPP was widened from 3°C to more than 6°C.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"38 1","pages":"107 - 86"},"PeriodicalIF":1.3000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319846785","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319846785","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Polypropylene (PP) foamed products have the advantages of heat and chemical resistance, but it is difficult to foam without modified PP. Traditionally, researchers have used chemical modification to increase the melt strength to improve the foaming properties of PP. In this article, we designed four kinds of screw combinations, and five regions are selected for sampling. The polytetrafluoroethylene (PTFE) and isotactic polypropylene (iPP) were blended by one-step fiber forming method, and then we tested the rheological properties and foaming properties. It is found that the rheological properties of the in situ microfiber composite are significantly improved than the iPP, and the crystallization temperature is also increased. The foaming experiment of the composite showed that the foaming performance of the composite with in situ microfiber morphology was significantly improved compared with the pure iPP performance, and the foaming temperature window of iPP was widened from 3°C to more than 6°C.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.