Towards Next-Generation Cybersecurity with Graph AI

Q3 Computer Science
Benjamin Bowman, H. H. Huang
{"title":"Towards Next-Generation Cybersecurity with Graph AI","authors":"Benjamin Bowman, H. H. Huang","doi":"10.1145/3469379.3469386","DOIUrl":null,"url":null,"abstract":"Cybersecurity professionals are inundated with large amounts of data, and require intelligent algorithms capable of distinguishing vulnerable from patched, normal from anomalous, and malicious from benign. Unfortunately, not all machine learning (ML) and artificial intelligence (AI) algorithms are created equal, and in this position paper we posit that a new breed of ML, specifically graph-based machine learning (Graph AI), is poised to make a significant impact in this domain. We will discuss the primary differentiators between traditional ML and graph ML, and provide reasons and justifications for why the latter is well-suited to many aspects of cybersecurity. We will present several example applications and result of graph ML in cybersecurity, followed by a discussion of the challenges that lie ahead.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"55 1","pages":"61 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3469379.3469386","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469379.3469386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

Cybersecurity professionals are inundated with large amounts of data, and require intelligent algorithms capable of distinguishing vulnerable from patched, normal from anomalous, and malicious from benign. Unfortunately, not all machine learning (ML) and artificial intelligence (AI) algorithms are created equal, and in this position paper we posit that a new breed of ML, specifically graph-based machine learning (Graph AI), is poised to make a significant impact in this domain. We will discuss the primary differentiators between traditional ML and graph ML, and provide reasons and justifications for why the latter is well-suited to many aspects of cybersecurity. We will present several example applications and result of graph ML in cybersecurity, followed by a discussion of the challenges that lie ahead.
用图形人工智能实现下一代网络安全
网络安全专业人员被大量数据淹没,需要能够区分漏洞与修补、正常与异常、恶意与良性的智能算法。不幸的是,并非所有的机器学习(ML)和人工智能(AI)算法都是平等的,在这篇立场论文中,我们假设一种新的机器学习,特别是基于图的机器学习。我们将讨论传统ML和图ML之间的主要区别,并提供后者非常适合网络安全的许多方面的原因和理由。我们将介绍图ML在网络安全中的几个示例应用和结果,然后讨论未来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信