L. Pradhan, S. Rout, Bipin Kumar Parida, S. Mohapatra, R. Sakthivel, D. Behera
{"title":"Analyzing the role of Ni dopant to change the structural, optical and photocatalytic properties of SnO2 nanoparticles","authors":"L. Pradhan, S. Rout, Bipin Kumar Parida, S. Mohapatra, R. Sakthivel, D. Behera","doi":"10.1088/2043-6262/acebd7","DOIUrl":null,"url":null,"abstract":"SnO2 and 5 wt% Ni doped SnO2 nanoparticles (SnO2:Ni NPs) were successfully synthesised by a template-free hydrothermal method. X-ray diffraction (XRD) patterns depicted polycrystalline nature of the NPs in rutile-type cassiterite phase with dominant (110) and (101) Bragg diffraction peaks. Rietveld refinement of XRD patterns supported single phase tetragonal crystal structure having space group P42/m n m. With Ni doping, crystallite size of NPs decreased from 39 nm to 35 nm whereas lattice strain increased from 3.56 × 10−3 to 3.99 × 10−3. This is attributed to the substitution of Sn4+ ion by Ni2+ ions. The morphology of the SnO2 NPs also changed from regular spherical shape to elongated irregular shape upon Ni doping. The dominant Raman peak obtained at 634 cm−1 matched with the signature peak for rutile SnO2 (Raman A1g mode). Further, we observed disappearance of E g mode due to Ni doping, which indicated the formation of oxygen vacancies. Also, XPS analysis indicated an increase of oxygen vacancy concentration in the doped NPs due to charge imbalance between Sn4+ and Ni2+. The direct optical band gap of SnO2 increased from 3.97 eV to 4.11 eV when doped with 5 wt% Ni and it is ascribed to Burstein–Moss effect. Irrespective of higher optical band gap of SnO2:Ni NPs, they showed enhanced photocatalytic activity to degrade Rhodamine B (RhB) dye molecules under UV-visible irradiation. The first order kinetic reaction rate constants for degradation of RhB were found to be 0.014 min−1 and 0.045 min−1 in case of SnO2 and SnO2:Ni NPs respectively. The enhanced photocatalytic activity in SnO2:Ni NPs is explained by relating to the formation of more oxygen vacancies and chemisorptions of O2 and H2O molecules followed by generation of radicals. This work demonstrates the superiority of SnO2:Ni NPs for use as photocatalytic material for industrial waste water treatment.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acebd7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SnO2 and 5 wt% Ni doped SnO2 nanoparticles (SnO2:Ni NPs) were successfully synthesised by a template-free hydrothermal method. X-ray diffraction (XRD) patterns depicted polycrystalline nature of the NPs in rutile-type cassiterite phase with dominant (110) and (101) Bragg diffraction peaks. Rietveld refinement of XRD patterns supported single phase tetragonal crystal structure having space group P42/m n m. With Ni doping, crystallite size of NPs decreased from 39 nm to 35 nm whereas lattice strain increased from 3.56 × 10−3 to 3.99 × 10−3. This is attributed to the substitution of Sn4+ ion by Ni2+ ions. The morphology of the SnO2 NPs also changed from regular spherical shape to elongated irregular shape upon Ni doping. The dominant Raman peak obtained at 634 cm−1 matched with the signature peak for rutile SnO2 (Raman A1g mode). Further, we observed disappearance of E g mode due to Ni doping, which indicated the formation of oxygen vacancies. Also, XPS analysis indicated an increase of oxygen vacancy concentration in the doped NPs due to charge imbalance between Sn4+ and Ni2+. The direct optical band gap of SnO2 increased from 3.97 eV to 4.11 eV when doped with 5 wt% Ni and it is ascribed to Burstein–Moss effect. Irrespective of higher optical band gap of SnO2:Ni NPs, they showed enhanced photocatalytic activity to degrade Rhodamine B (RhB) dye molecules under UV-visible irradiation. The first order kinetic reaction rate constants for degradation of RhB were found to be 0.014 min−1 and 0.045 min−1 in case of SnO2 and SnO2:Ni NPs respectively. The enhanced photocatalytic activity in SnO2:Ni NPs is explained by relating to the formation of more oxygen vacancies and chemisorptions of O2 and H2O molecules followed by generation of radicals. This work demonstrates the superiority of SnO2:Ni NPs for use as photocatalytic material for industrial waste water treatment.