{"title":"On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split","authors":"M. Lazar, G. Po","doi":"10.1142/S2424913018400088","DOIUrl":null,"url":null,"abstract":"The theory of Mindlin’s isotropic strain gradient elasticity of form II is reviewed. Three-dimensional and two-dimensional Green tensors and their first and second derivatives are derived for an unbounded medium. Using an operator-split in Mindlin’s strain gradient elasticity, three-dimensional and two-dimensional regularization function tensors are computed, which are the three-dimensional and two-dimensional Green tensors of a tensorial Helmholtz equation. In addition, a length scale tensor is introduced, which is responsible for the characteristic material lengths of strain gradient elasticity. Moreover, based on the Green tensors of Mindlin’s strain gradient elasticity, point, line and double forces are studied.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2424913018400088","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424913018400088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 16
Abstract
The theory of Mindlin’s isotropic strain gradient elasticity of form II is reviewed. Three-dimensional and two-dimensional Green tensors and their first and second derivatives are derived for an unbounded medium. Using an operator-split in Mindlin’s strain gradient elasticity, three-dimensional and two-dimensional regularization function tensors are computed, which are the three-dimensional and two-dimensional Green tensors of a tensorial Helmholtz equation. In addition, a length scale tensor is introduced, which is responsible for the characteristic material lengths of strain gradient elasticity. Moreover, based on the Green tensors of Mindlin’s strain gradient elasticity, point, line and double forces are studied.