Automated metadata annotation: What is and is not possible with machine learning

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mingfang Wu, Hans Brandhorst, M. Marinescu, J. M. López, Marjorie M. K. Hlava, J. Busch
{"title":"Automated metadata annotation: What is and is not possible with machine learning","authors":"Mingfang Wu, Hans Brandhorst, M. Marinescu, J. M. López, Marjorie M. K. Hlava, J. Busch","doi":"10.1162/dint_a_00162","DOIUrl":null,"url":null,"abstract":"ABSTRACT Automated metadata annotation is only as good as training dataset, or rules that are available for the domain. It's important to learn what type of data content a pre-trained machine learning algorithm has been trained on to understand its limitations and potential biases. Consider what type of content is readily available to train an algorithm—what's popular and what's available. However, scholarly and historical content is often not available in consumable, homogenized, and interoperable formats at the large volume that is required for machine learning. There are exceptions such as science and medicine, where large, well documented collections are available. This paper presents the current state of automated metadata annotation in cultural heritage and research data, discusses challenges identified from use cases, and proposes solutions.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"122-138"},"PeriodicalIF":1.3000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT Automated metadata annotation is only as good as training dataset, or rules that are available for the domain. It's important to learn what type of data content a pre-trained machine learning algorithm has been trained on to understand its limitations and potential biases. Consider what type of content is readily available to train an algorithm—what's popular and what's available. However, scholarly and historical content is often not available in consumable, homogenized, and interoperable formats at the large volume that is required for machine learning. There are exceptions such as science and medicine, where large, well documented collections are available. This paper presents the current state of automated metadata annotation in cultural heritage and research data, discusses challenges identified from use cases, and proposes solutions.
自动化元数据注释:机器学习可以做什么,不可以做什么
摘要自动化元数据注释只能与训练数据集或域可用的规则一样好。了解预先训练的机器学习算法在什么类型的数据内容上进行了训练,以了解其局限性和潜在的偏见,这一点很重要。考虑什么类型的内容可以很容易地用于训练算法——什么是流行的,什么是可用的。然而,机器学习所需的大量学术和历史内容往往无法以可消费、同质化和可互操作的格式提供。也有例外,比如科学和医学,那里有大量的、有充分记录的藏品。本文介绍了文化遗产和研究数据中自动元数据注释的现状,讨论了从用例中发现的挑战,并提出了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信