{"title":"Generate high data rate of optical carries by using nanomaterial graphene in slab waveguide","authors":"Saib Thiab Alwan, O. A. Mahmood, Tahreer Mahmood","doi":"10.1515/cls-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract Single mode is one of the most practical applications in microwave propagations because of its high mode resolution and low transmission loss. In this paper, the single mode graphene material was implemented in slab waveguide to study the performance and optical properties of graphene material; the parameters that affect these models were found to be the cut-off frequency, attenuation wavenumbers, modes numbers, skin depth, angles incident, and propagation wave numbers. The effectiveness of these factors was simulated and analyzed using MATLAB software program. In this paper, the carriers were generated using nano-graphene; the optical carrier source provided seven carriers with the frequency spacing of 4.9682 GHz. After splitting the carriers using optical demultiplexer, these carriers were modulated independently using optical Quadrature phase shift keying (QPSK) modulators at symbol rate equal to 4.9682 Gsymbol/s; this matches the frequency spacing of the carriers. Under this argument, the total data rate was equal to 2*7*4.9682 Gsymbol/s = 69.5548 Gbit/s, and the total bandwidth was 34.774 GHz. These carriers were found to work in optical communication with high data rate.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"187 - 192"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Single mode is one of the most practical applications in microwave propagations because of its high mode resolution and low transmission loss. In this paper, the single mode graphene material was implemented in slab waveguide to study the performance and optical properties of graphene material; the parameters that affect these models were found to be the cut-off frequency, attenuation wavenumbers, modes numbers, skin depth, angles incident, and propagation wave numbers. The effectiveness of these factors was simulated and analyzed using MATLAB software program. In this paper, the carriers were generated using nano-graphene; the optical carrier source provided seven carriers with the frequency spacing of 4.9682 GHz. After splitting the carriers using optical demultiplexer, these carriers were modulated independently using optical Quadrature phase shift keying (QPSK) modulators at symbol rate equal to 4.9682 Gsymbol/s; this matches the frequency spacing of the carriers. Under this argument, the total data rate was equal to 2*7*4.9682 Gsymbol/s = 69.5548 Gbit/s, and the total bandwidth was 34.774 GHz. These carriers were found to work in optical communication with high data rate.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.