The Possible Emergence of an Attractive Inverse-Square Law from the Wave-Nature of Particles

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
Dong Zhang, P. Kroupa, J. Pflamm-Altenburg, M. Schmid
{"title":"The Possible Emergence of an Attractive Inverse-Square Law from the Wave-Nature of Particles","authors":"Dong Zhang, P. Kroupa, J. Pflamm-Altenburg, M. Schmid","doi":"10.1155/2022/2907762","DOIUrl":null,"url":null,"abstract":"A model of a particle in finite space is developed and the properties that the particle may possess under this model are studied. The possibility that particles attract each other due to their own wave nature is discussed. The assumption that the particles are spatially confined oscillations (SCO) in the medium is used. The relation between the SCO and the refractive index of the medium in the idealized universe is derived. Due to the plane wave constituents of SCOs, the presence of a refractive index field with a nonzero gradient causes the SCO to accelerate. The SCO locally changes the refractive index such that another SCO is accelerated towards it, and vice versa. It is concluded that the particles can attract each other due to their wave nature and an inverse-square-type acceleration emerges. The constant parameter in the inverse-square-type acceleration is used to compare with the gravitational constant \n \n \n \n G\n \n \n N\n \n \n \n , and the possibility of non inverse-square-type behavior is preliminary discussed.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/2907762","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 1

Abstract

A model of a particle in finite space is developed and the properties that the particle may possess under this model are studied. The possibility that particles attract each other due to their own wave nature is discussed. The assumption that the particles are spatially confined oscillations (SCO) in the medium is used. The relation between the SCO and the refractive index of the medium in the idealized universe is derived. Due to the plane wave constituents of SCOs, the presence of a refractive index field with a nonzero gradient causes the SCO to accelerate. The SCO locally changes the refractive index such that another SCO is accelerated towards it, and vice versa. It is concluded that the particles can attract each other due to their wave nature and an inverse-square-type acceleration emerges. The constant parameter in the inverse-square-type acceleration is used to compare with the gravitational constant G N , and the possibility of non inverse-square-type behavior is preliminary discussed.
从粒子的波动性质中可能出现有吸引力的平方反比定律
建立了有限空间中粒子的模型,并研究了在该模型下粒子可能具有的性质。讨论了粒子由于自身的波动性质而相互吸引的可能性。使用了粒子在介质中是空间受限振荡(SCO)的假设。导出了理想宇宙中介质的折射率与SCO的关系。由于SCOs的平面波成分,具有非零梯度的折射率场的存在导致SCO加速。SCO局部地改变折射率,使得另一个SCO向其加速,反之亦然。得出的结论是,由于粒子的波动性质,粒子可以相互吸引,并出现平方反比加速度。利用逆平方型加速度中的常数参数与重力常数GN进行比较,初步讨论了非逆平方型行为的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信