Finite mixture models for linked survey and administrative data: Estimation and postestimation

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
S. Jenkins, F. Ríos‐Avila
{"title":"Finite mixture models for linked survey and administrative data: Estimation and postestimation","authors":"S. Jenkins, F. Ríos‐Avila","doi":"10.1177/1536867X231161976","DOIUrl":null,"url":null,"abstract":"Researchers use finite mixture models to analyze linked survey and administrative data on labor earnings, while also accounting for various types of measurement error in each data source. Different combinations of error-ridden and error-free observations characterize latent classes. Latent class probabilities depend on the probabilities of the different types of error. We introduce a suite of commands to fit finite mixture models to linked survey-administrative data: there is a general model and seven simpler variants. We also provide postestimation commands for assessment of reliability, marginal effects, data simulation, and prediction of hybrid variables that combine information from both data sources about the outcome of interest. Our commands can also be used to study measurement errors in other variables besides labor earnings.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"23 1","pages":"53 - 85"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X231161976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Researchers use finite mixture models to analyze linked survey and administrative data on labor earnings, while also accounting for various types of measurement error in each data source. Different combinations of error-ridden and error-free observations characterize latent classes. Latent class probabilities depend on the probabilities of the different types of error. We introduce a suite of commands to fit finite mixture models to linked survey-administrative data: there is a general model and seven simpler variants. We also provide postestimation commands for assessment of reliability, marginal effects, data simulation, and prediction of hybrid variables that combine information from both data sources about the outcome of interest. Our commands can also be used to study measurement errors in other variables besides labor earnings.
关联调查和行政数据的有限混合模型:估计和后估计
研究人员使用有限混合模型来分析劳动收入的相关调查和行政数据,同时也考虑到每个数据源中的各种类型的测量误差。充满误差和无误差观测的不同组合表征了潜在类别。潜在类概率取决于不同类型错误的概率。我们引入了一套命令,将有限混合模型与关联的调查管理数据相匹配:有一个通用模型和七个更简单的变体。我们还提供了用于评估可靠性、边际效应、数据模拟和混合变量预测的后估计命令,这些混合变量结合了来自两个数据源的有关感兴趣结果的信息。我们的命令还可以用于研究除劳动收入外的其他变量的测量误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信