{"title":"Positioning performance with dual-frequency low-cost GNSS receivers","authors":"K. Kaźmierski, Kamil Dominiak, Grzegorz Marut","doi":"10.1515/jag-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract In this study, positioning quality is tested with the use of low-cost in-house developed receivers. The analyzes consider the practical use of low-cost devices in surveying works. In the network solution, the accuracy of the GNSS positioning based on low-cost receivers can be characterized by the repeatability of the baseline length of 1 and 6 mm in 24 h and 10 min observation sessions, respectively. The field experiment of 4 GNSS receivers and 3 GNSS low-cost receivers allowed for establishing a precise geodetic control network. The accuracy of the control point coordinates determined with low-cost GNSS receivers equals a maximum of 17 and 40 mm for the horizontal and height components, respectively. Therefore, low-cost GNSS receivers can provide positioning accuracy at the some centimeter level and can support land surveying and geodetic monitoring activities.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this study, positioning quality is tested with the use of low-cost in-house developed receivers. The analyzes consider the practical use of low-cost devices in surveying works. In the network solution, the accuracy of the GNSS positioning based on low-cost receivers can be characterized by the repeatability of the baseline length of 1 and 6 mm in 24 h and 10 min observation sessions, respectively. The field experiment of 4 GNSS receivers and 3 GNSS low-cost receivers allowed for establishing a precise geodetic control network. The accuracy of the control point coordinates determined with low-cost GNSS receivers equals a maximum of 17 and 40 mm for the horizontal and height components, respectively. Therefore, low-cost GNSS receivers can provide positioning accuracy at the some centimeter level and can support land surveying and geodetic monitoring activities.