{"title":"Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential","authors":"Ning Wang, Shiping Huang","doi":"10.1103/PHYSREVB.102.094111","DOIUrl":null,"url":null,"abstract":"We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling strategies to obtain training samples that contain a variety of local atomic environments. First-principles calculations based on density functional theory (DFT) are employed to get reference energies and forces for training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase ${\\mathrm{H}}_{2}$ interactions, and the potential energy surface (PES) for ${\\mathrm{H}}_{2}$ dissociative adsorption on Mg(0001) surfaces, our ML potential has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML potential, we find that for ${\\mathrm{Mg}}_{n}{\\mathrm{H}}_{m}$ clusters, $\\mathrm{Mg}/\\mathrm{Mg}{\\mathrm{H}}_{x}$ phase separation occurs when $ml2n$, and for a cluster with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":"102 1","pages":"094111"},"PeriodicalIF":3.7000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/PHYSREVB.102.094111","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.094111","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling strategies to obtain training samples that contain a variety of local atomic environments. First-principles calculations based on density functional theory (DFT) are employed to get reference energies and forces for training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase ${\mathrm{H}}_{2}$ interactions, and the potential energy surface (PES) for ${\mathrm{H}}_{2}$ dissociative adsorption on Mg(0001) surfaces, our ML potential has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML potential, we find that for ${\mathrm{Mg}}_{n}{\mathrm{H}}_{m}$ clusters, $\mathrm{Mg}/\mathrm{Mg}{\mathrm{H}}_{x}$ phase separation occurs when $ml2n$, and for a cluster with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter