Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential

IF 3.7 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ning Wang, Shiping Huang
{"title":"Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential","authors":"Ning Wang, Shiping Huang","doi":"10.1103/PHYSREVB.102.094111","DOIUrl":null,"url":null,"abstract":"We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling strategies to obtain training samples that contain a variety of local atomic environments. First-principles calculations based on density functional theory (DFT) are employed to get reference energies and forces for training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase ${\\mathrm{H}}_{2}$ interactions, and the potential energy surface (PES) for ${\\mathrm{H}}_{2}$ dissociative adsorption on Mg(0001) surfaces, our ML potential has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML potential, we find that for ${\\mathrm{Mg}}_{n}{\\mathrm{H}}_{m}$ clusters, $\\mathrm{Mg}/\\mathrm{Mg}{\\mathrm{H}}_{x}$ phase separation occurs when $ml2n$, and for a cluster with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":"102 1","pages":"094111"},"PeriodicalIF":3.7000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/PHYSREVB.102.094111","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.094111","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling strategies to obtain training samples that contain a variety of local atomic environments. First-principles calculations based on density functional theory (DFT) are employed to get reference energies and forces for training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase ${\mathrm{H}}_{2}$ interactions, and the potential energy surface (PES) for ${\mathrm{H}}_{2}$ dissociative adsorption on Mg(0001) surfaces, our ML potential has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML potential, we find that for ${\mathrm{Mg}}_{n}{\mathrm{H}}_{m}$ clusters, $\mathrm{Mg}/\mathrm{Mg}{\mathrm{H}}_{x}$ phase separation occurs when $ml2n$, and for a cluster with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.
具有机器学习原子间势的氢化镁纳米团簇分子动力学研究
我们介绍了一种基于Behler-Parrinello方法的Mg-H系统的机器学习(ML)原子间势。为了适应簇结构中复杂的键合条件,我们结合了多种采样策略来获得包含多种局部原子环境的训练样本。基于密度泛函理论(DFT)的第一性原理计算得到用于训练机器学习电位的参考能量和力。对于体性质、声子色散、气相${\ mathm {H}}_{2}$相互作用以及${\ mathm {H}}_{2}$在Mg(0001)表面解离吸附的势能面(PES)的计算,我们的ML势已经达到了GGA-PBE水平的DFT精度,并且可以通过结合DFT- d3方法来扩展描述范德华相互作用。此外,通过基于ML势的分子动力学(MD)模拟,我们发现对于${\mathrm{Mg}}_{n}}{\mathrm{H}}_{m}$团簇,$\mathrm{Mg}/ $ mathrm{Mg}} {\mathrm{H}}_{x}$在$ml2n$时发生相分离,对于直径约为4 nm的团簇,Mg部分在低温下形成六方密排(hcp)纳米晶体结构。计算得到的扩散系数与实验值吻合,在400 ~ 700 K范围内具有Arrhenius型的温度依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B PHYSICS, CONDENSED MATTER-
CiteScore
6.30
自引率
32.40%
发文量
4177
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信