N. Kondratyuk, V. Nikolskiy, D. Pavlov, V. Stegailov
{"title":"GPU-accelerated molecular dynamics: State-of-art software performance and porting from Nvidia CUDA to AMD HIP","authors":"N. Kondratyuk, V. Nikolskiy, D. Pavlov, V. Stegailov","doi":"10.1177/10943420211008288","DOIUrl":null,"url":null,"abstract":"Classical molecular dynamics (MD) calculations represent a significant part of the utilization time of high-performance computing systems. As usual, the efficiency of such calculations is based on an interplay of software and hardware that are nowadays moving to hybrid GPU-based technologies. Several well-developed open-source MD codes focused on GPUs differ both in their data management capabilities and in performance. In this work, we analyze the performance of LAMMPS, GROMACS and OpenMM MD packages with different GPU backends on Nvidia Volta and AMD Vega20 GPUs. We consider the efficiency of solving two identical MD models (generic for material science and biomolecular studies) using different software and hardware combinations. We describe our experience in porting the CUDA backend of LAMMPS to ROCm HIP that shows considerable benefits for AMD GPUs comparatively to the OpenCL backend.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"35 1","pages":"312 - 324"},"PeriodicalIF":2.5000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10943420211008288","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211008288","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 34
Abstract
Classical molecular dynamics (MD) calculations represent a significant part of the utilization time of high-performance computing systems. As usual, the efficiency of such calculations is based on an interplay of software and hardware that are nowadays moving to hybrid GPU-based technologies. Several well-developed open-source MD codes focused on GPUs differ both in their data management capabilities and in performance. In this work, we analyze the performance of LAMMPS, GROMACS and OpenMM MD packages with different GPU backends on Nvidia Volta and AMD Vega20 GPUs. We consider the efficiency of solving two identical MD models (generic for material science and biomolecular studies) using different software and hardware combinations. We describe our experience in porting the CUDA backend of LAMMPS to ROCm HIP that shows considerable benefits for AMD GPUs comparatively to the OpenCL backend.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.