Copolymerization Reactivity Ratio Inference: Determining Confidence Contours in Parameter Space via a Bayesian Hierarchical Approach

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Robert Reischke
{"title":"Copolymerization Reactivity Ratio Inference: Determining Confidence Contours in Parameter Space via a Bayesian Hierarchical Approach","authors":"Robert Reischke","doi":"10.1002/mats.202200063","DOIUrl":null,"url":null,"abstract":"<p>Confidence contours in parameter space are a helpful tool to compare and classify determined estimators. For more intricate parameter estimations of nonlinear nature or complex error structures, the procedure of determining confidence contours is a statistically complex task. For polymer chemists, such particular cases are encountered in determination of reactivity ratios in copolymerization. Hereby, determination of reactivity ratios in copolymerization requires nonlinear parameter estimation. Additionally, data may possess (possibly correlated) errors in both dependent and independent variables. A common approach for such nonlinear estimations is the error-in-variables model yielding statistically unbiased estimators. Regarding reactivity ratios, to date published procedures neglect the non-Gaussian structure of the error estimates that is a consequence of the nonlinearity of the model. In this publication, this issue is addressed by employing a Bayesian hierarchical model, which correctly propagates the errors of all variables. The statistical procedure is discussed in chemist friendly language to encourage confident usage of the tool. The approach is based on a <span>Python</span> program requiring minimal installation effort. A detailed manual of the code is included in the appendix of this work, in an effort to make this procedure available to all interested polymer chemists.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202200063","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Confidence contours in parameter space are a helpful tool to compare and classify determined estimators. For more intricate parameter estimations of nonlinear nature or complex error structures, the procedure of determining confidence contours is a statistically complex task. For polymer chemists, such particular cases are encountered in determination of reactivity ratios in copolymerization. Hereby, determination of reactivity ratios in copolymerization requires nonlinear parameter estimation. Additionally, data may possess (possibly correlated) errors in both dependent and independent variables. A common approach for such nonlinear estimations is the error-in-variables model yielding statistically unbiased estimators. Regarding reactivity ratios, to date published procedures neglect the non-Gaussian structure of the error estimates that is a consequence of the nonlinearity of the model. In this publication, this issue is addressed by employing a Bayesian hierarchical model, which correctly propagates the errors of all variables. The statistical procedure is discussed in chemist friendly language to encourage confident usage of the tool. The approach is based on a Python program requiring minimal installation effort. A detailed manual of the code is included in the appendix of this work, in an effort to make this procedure available to all interested polymer chemists.

Abstract Image

共聚反应性比推断:通过贝叶斯层次方法确定参数空间中的置信轮廓
参数空间中的置信轮廓是比较和分类确定估计量的有用工具。对于非线性性质或复杂误差结构的更复杂参数估计,确定置信轮廓的过程在统计上是一项复杂的任务。对于聚合物化学家来说,在测定共聚反应性比率时遇到了这种特殊情况。因此,共聚反应性比的确定需要非线性参数估计。此外,数据可能在因变量和自变量中都有(可能相关的)误差。这种非线性估计的一种常用方法是产生统计无偏估计的变量误差模型。关于反应性比,迄今为止公布的程序忽略了误差估计的非高斯结构,这是模型非线性的结果。在本出版物中,通过采用贝叶斯分层模型解决了这个问题,该模型正确地传播了所有变量的错误。统计程序在化学家友好的语言讨论,以鼓励自信的使用工具。该方法基于一个Python程序,需要最少的安装工作。代码的详细手册包含在本工作的附录中,努力使所有感兴趣的聚合物化学家都可以使用该程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信