Rapid calculation of part scale residual stresses in powder bed additive manufacturing

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. Khan, L. S. Mohan, A. De, T. DebRoy
{"title":"Rapid calculation of part scale residual stresses in powder bed additive manufacturing","authors":"K. Khan, L. S. Mohan, A. De, T. DebRoy","doi":"10.1080/13621718.2022.2139446","DOIUrl":null,"url":null,"abstract":"Numerical modelling of thermo-mechanical residual stresses for laser powder bed fusion is complex and computationally intensive. A novel analytical model is presented here that can compute the residual stress distributions through a printed part and the baseplate quickly and reliably using phenomenological modelling. The peak residual stress for each deposited layer, needed in the model, is computed using scaling analysis. The computed residual stress distributions are tested with the corresponding independent experimentally measured and numerically computed results. The analytically calculated residual stress distributions are shown to be in good agreement with the corresponding independent results. The analytical model is shown to be 10,000 times faster than the numerical models.","PeriodicalId":21729,"journal":{"name":"Science and Technology of Welding and Joining","volume":"28 1","pages":"145 - 153"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Welding and Joining","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13621718.2022.2139446","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Numerical modelling of thermo-mechanical residual stresses for laser powder bed fusion is complex and computationally intensive. A novel analytical model is presented here that can compute the residual stress distributions through a printed part and the baseplate quickly and reliably using phenomenological modelling. The peak residual stress for each deposited layer, needed in the model, is computed using scaling analysis. The computed residual stress distributions are tested with the corresponding independent experimentally measured and numerically computed results. The analytically calculated residual stress distributions are shown to be in good agreement with the corresponding independent results. The analytical model is shown to be 10,000 times faster than the numerical models.
粉末床增材制造中零件残余应力的快速计算
激光粉末床聚变热机械残余应力的数值模拟是复杂的,计算量大。本文提出了一种新的分析模型,该模型可以使用唯象建模快速可靠地计算印刷零件和基板的残余应力分布。使用比例分析计算模型中所需的每个沉积层的峰值残余应力。计算的残余应力分布与相应的独立实验测量和数值计算结果进行了测试。分析计算的残余应力分布与相应的独立结果一致。分析模型的速度是数值模型的10000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Welding and Joining
Science and Technology of Welding and Joining 工程技术-材料科学:综合
CiteScore
6.10
自引率
12.10%
发文量
79
审稿时长
1.7 months
期刊介绍: Science and Technology of Welding and Joining is an international peer-reviewed journal covering both the basic science and applied technology of welding and joining. Its comprehensive scope encompasses all welding and joining techniques (brazing, soldering, mechanical joining, etc.) and aspects such as characterisation of heat sources, mathematical modelling of transport phenomena, weld pool solidification, phase transformations in weldments, microstructure-property relationships, welding processes, weld sensing, control and automation, neural network applications, and joining of advanced materials, including plastics and composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信