An $\varepsilon$-regularity theorem for line bundle mean curvature flow

IF 0.5 4区 数学 Q3 MATHEMATICS
Xiaoling Han, Hikaru Yamamoto
{"title":"An $\\varepsilon$-regularity theorem for line bundle mean curvature flow","authors":"Xiaoling Han, Hikaru Yamamoto","doi":"10.4310/ajm.2022.v26.n6.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\\varepsilon$-regularity theorem.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2022.v26.n6.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\varepsilon$-regularity theorem.
线束平均曲率流的$\varepsilon$正则性定理
本文研究Jacob和Yau定义的光束平均曲率流。管束平均曲率流是在给定Kahler流形上得到变形HermitianYang-Mills度量的一类抛物流。本文的目的是给出一个线性丛平均曲率流的$\varepsilon$正则性定理。为了建立这个定理,我们提供了一个尺度不变的单调量。作为这个量的一个临界点,我们定义了光束平均曲率流的自收缩解。给出了自收缩算子的Liouville型定理。它在$\varepsilon$正则性定理的证明中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信