{"title":"Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies","authors":"Tingting Zhou, M. Elliott, R. Little","doi":"10.3390/stats5040076","DOIUrl":null,"url":null,"abstract":"Propensity score (PS) based methods, such as matching, stratification, regression adjustment, simple and augmented inverse probability weighting, are popular for controlling for observed confounders in observational studies of causal effects. More recently, we proposed penalized spline of propensity prediction (PENCOMP), which multiply-imputes outcomes for unassigned treatments using a regression model that includes a penalized spline of the estimated selection probability and other covariates. For PS methods to work reliably, there should be sufficient overlap in the propensity score distributions between treatment groups. Limited overlap can result in fewer subjects being matched or in extreme weights causing numerical instability and bias in causal estimation. The problem of limited overlap suggests (a) defining alternative estimands that restrict inferences to subpopulations where all treatments have the potential to be assigned, and (b) excluding or down-weighting sample cases where the propensity to receive one of the compared treatments is close to zero. We compared PENCOMP and other PS methods for estimation of alternative causal estimands when limited overlap occurs. Simulations suggest that, when there are extreme weights, PENCOMP tends to outperform the weighted estimators for ATE and performs similarly to the weighted estimators for alternative estimands. We illustrate PENCOMP in two applications: the effect of antiretroviral treatments on CD4 counts using the Multicenter AIDS cohort study (MACS) and whether right heart catheterization (RHC) is a beneficial treatment in treating critically ill patients.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Propensity score (PS) based methods, such as matching, stratification, regression adjustment, simple and augmented inverse probability weighting, are popular for controlling for observed confounders in observational studies of causal effects. More recently, we proposed penalized spline of propensity prediction (PENCOMP), which multiply-imputes outcomes for unassigned treatments using a regression model that includes a penalized spline of the estimated selection probability and other covariates. For PS methods to work reliably, there should be sufficient overlap in the propensity score distributions between treatment groups. Limited overlap can result in fewer subjects being matched or in extreme weights causing numerical instability and bias in causal estimation. The problem of limited overlap suggests (a) defining alternative estimands that restrict inferences to subpopulations where all treatments have the potential to be assigned, and (b) excluding or down-weighting sample cases where the propensity to receive one of the compared treatments is close to zero. We compared PENCOMP and other PS methods for estimation of alternative causal estimands when limited overlap occurs. Simulations suggest that, when there are extreme weights, PENCOMP tends to outperform the weighted estimators for ATE and performs similarly to the weighted estimators for alternative estimands. We illustrate PENCOMP in two applications: the effect of antiretroviral treatments on CD4 counts using the Multicenter AIDS cohort study (MACS) and whether right heart catheterization (RHC) is a beneficial treatment in treating critically ill patients.