D. Jáuregui-Vázquez, J. Korterik, H. Offerhaus, R. Rojas‐Laguna, J. Álvarez-Chávez
{"title":"Strain optical fiber sensor with modified sensitivity based on the vernier effect","authors":"D. Jáuregui-Vázquez, J. Korterik, H. Offerhaus, R. Rojas‐Laguna, J. Álvarez-Chávez","doi":"10.1080/10739149.2022.2150005","DOIUrl":null,"url":null,"abstract":"Abstract An optical fiber strain sensor with adjustable sensitivity is proposed and demonstrated. The strain sensing setup employs a fiber optic Michelson interferometer (sensing element) and an extrinsic Fabry–Perot interferometer, in which both structures excited the Vernier effect. By adjusting the cavity length of the extrinsic Fabry–Perot interferometer, it is possible to control the M-factor. The set-up offers both sensitivity enhancement and magnification mode, where the maximal sensitivity is 4.38 pm/με (M-factor = 2.3). This design improves the sensor performance and its implementation is not intricate.","PeriodicalId":13547,"journal":{"name":"Instrumentation Science & Technology","volume":"51 1","pages":"421 - 434"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10739149.2022.2150005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract An optical fiber strain sensor with adjustable sensitivity is proposed and demonstrated. The strain sensing setup employs a fiber optic Michelson interferometer (sensing element) and an extrinsic Fabry–Perot interferometer, in which both structures excited the Vernier effect. By adjusting the cavity length of the extrinsic Fabry–Perot interferometer, it is possible to control the M-factor. The set-up offers both sensitivity enhancement and magnification mode, where the maximal sensitivity is 4.38 pm/με (M-factor = 2.3). This design improves the sensor performance and its implementation is not intricate.
期刊介绍:
Instrumentation Science & Technology is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with innovative instrument design and applications in chemistry, physics biotechnology and environmental science. Particular attention is given to state-of-the-art developments and their rapid communication to the scientific community.
Emphasis is on modern instrumental concepts, though not exclusively, including detectors, sensors, data acquisition and processing, instrument control, chromatography, electrochemistry, spectroscopy of all types, electrophoresis, radiometry, relaxation methods, thermal analysis, physical property measurements, surface physics, membrane technology, microcomputer design, chip-based processes, and more.
Readership includes everyone who uses instrumental techniques to conduct their research and development. They are chemists (organic, inorganic, physical, analytical, nuclear, quality control) biochemists, biotechnologists, engineers, and physicists in all of the instrumental disciplines mentioned above, in both the laboratory and chemical production environments. The journal is an important resource of instrument design and applications data.