Strain optical fiber sensor with modified sensitivity based on the vernier effect

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Jáuregui-Vázquez, J. Korterik, H. Offerhaus, R. Rojas‐Laguna, J. Álvarez-Chávez
{"title":"Strain optical fiber sensor with modified sensitivity based on the vernier effect","authors":"D. Jáuregui-Vázquez, J. Korterik, H. Offerhaus, R. Rojas‐Laguna, J. Álvarez-Chávez","doi":"10.1080/10739149.2022.2150005","DOIUrl":null,"url":null,"abstract":"Abstract An optical fiber strain sensor with adjustable sensitivity is proposed and demonstrated. The strain sensing setup employs a fiber optic Michelson interferometer (sensing element) and an extrinsic Fabry–Perot interferometer, in which both structures excited the Vernier effect. By adjusting the cavity length of the extrinsic Fabry–Perot interferometer, it is possible to control the M-factor. The set-up offers both sensitivity enhancement and magnification mode, where the maximal sensitivity is 4.38 pm/με (M-factor = 2.3). This design improves the sensor performance and its implementation is not intricate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10739149.2022.2150005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract An optical fiber strain sensor with adjustable sensitivity is proposed and demonstrated. The strain sensing setup employs a fiber optic Michelson interferometer (sensing element) and an extrinsic Fabry–Perot interferometer, in which both structures excited the Vernier effect. By adjusting the cavity length of the extrinsic Fabry–Perot interferometer, it is possible to control the M-factor. The set-up offers both sensitivity enhancement and magnification mode, where the maximal sensitivity is 4.38 pm/με (M-factor = 2.3). This design improves the sensor performance and its implementation is not intricate.
基于游标效应修正灵敏度的应变光纤传感器
摘要提出并演示了一种灵敏度可调的光纤应变传感器。应变传感装置采用光纤迈克尔逊干涉仪(传感元件)和非本征法布里-珀罗干涉仪,其中两种结构都激发了Vernier效应。通过调整本征法布里-珀罗干涉仪的腔长,可以控制M因子。该设置提供灵敏度增强和放大模式,其中最大灵敏度为4.38 pm/με(M因子=2.3)。这种设计提高了传感器的性能,并且其实现并不复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信