Jagjeet Singh, Annu Phogat, Vijay Kumar, Vinay Malik
{"title":"N-acetylcysteine ameliorates monocrotophos exposure-induced mitochondrial dysfunctions in rat liver","authors":"Jagjeet Singh, Annu Phogat, Vijay Kumar, Vinay Malik","doi":"10.1080/15376516.2022.2064258","DOIUrl":null,"url":null,"abstract":"Abstract Background: Monocrotophos (MCP) is an organophosphate pesticide with well-known toxicity in mammals. Exposure of MCP is associated with altered molecular physiology at sub-cellular levels. This study investigated the efficacy of N-acetylcysteine (NAC) against MCP exposure mediated mitochondrial dysfunctions in hepatic tissue of rats. Methods: Male Wistar rats were given NAC (200 mg/kg b.wt), MCP (0.9 mg/kg b.wt) and NAC together with MCP, intragastrically for 28 consecutive days. Mitochondrial complexes activities were evaluated using biochemical analysis. mRNA expression of mitochondrial complexes subunits, PGC-1α and its downstream regulators were analyzed using polymerase chain reaction. Results: Exposure of MCP (0.9 mg/kg b.wt, intragastrically, 28 d) decreased mitochondrial complexes activities and gene expression of complexes subunits. The expression of PGC-1α, NRF-1, NRF-2, and Tfam was also reduced significantly. The administration of NAC (200 mg/kg b.wt, intragastrically, 28 d) significantly increased mitochondrial complexes activities and gene expression of complexes subunits. Additionally, NAC also maintained mitochondrial functions, and enhanced the gene expression of PGC-1α and its downstream regulators. Conclusion: The results of this study indicate that NAC prevents hepatic mitochondrial dysfunctions and maintains PGC-1α signaling. In conclusion, NAC might be speculated as a therapeutic agent for mitochondrial dysfunctions following toxic exposures.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"32 1","pages":"686 - 694"},"PeriodicalIF":2.8000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2064258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Background: Monocrotophos (MCP) is an organophosphate pesticide with well-known toxicity in mammals. Exposure of MCP is associated with altered molecular physiology at sub-cellular levels. This study investigated the efficacy of N-acetylcysteine (NAC) against MCP exposure mediated mitochondrial dysfunctions in hepatic tissue of rats. Methods: Male Wistar rats were given NAC (200 mg/kg b.wt), MCP (0.9 mg/kg b.wt) and NAC together with MCP, intragastrically for 28 consecutive days. Mitochondrial complexes activities were evaluated using biochemical analysis. mRNA expression of mitochondrial complexes subunits, PGC-1α and its downstream regulators were analyzed using polymerase chain reaction. Results: Exposure of MCP (0.9 mg/kg b.wt, intragastrically, 28 d) decreased mitochondrial complexes activities and gene expression of complexes subunits. The expression of PGC-1α, NRF-1, NRF-2, and Tfam was also reduced significantly. The administration of NAC (200 mg/kg b.wt, intragastrically, 28 d) significantly increased mitochondrial complexes activities and gene expression of complexes subunits. Additionally, NAC also maintained mitochondrial functions, and enhanced the gene expression of PGC-1α and its downstream regulators. Conclusion: The results of this study indicate that NAC prevents hepatic mitochondrial dysfunctions and maintains PGC-1α signaling. In conclusion, NAC might be speculated as a therapeutic agent for mitochondrial dysfunctions following toxic exposures.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.