{"title":"On the non-uniqueness of the solution to a boundary value problem of heat conduction with a load in the form of a fractional derivative","authors":"M. Kosmakova, K.A. Izhanova, A.N. Khamzeyeva","doi":"10.31489/2022m4/98-106","DOIUrl":null,"url":null,"abstract":"The paper deals with the second boundary value problem for the loaded heat equation in the first quadrant. The loaded term contains a fractional derivative in the Caputo sense of an order α, 2<α<3. The boundary value problem is reduced to an integro-differential equation with a difference kernel by inverting the differential part. It is proved that a homogeneous integro-differential equation has at least one non-zero solution. It is shown that the solution of the homogeneous boundary value problem corresponding to the original boundary value problem is not unique, and the load acts as a strong perturbation of the boundary value problem.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m4/98-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper deals with the second boundary value problem for the loaded heat equation in the first quadrant. The loaded term contains a fractional derivative in the Caputo sense of an order α, 2<α<3. The boundary value problem is reduced to an integro-differential equation with a difference kernel by inverting the differential part. It is proved that a homogeneous integro-differential equation has at least one non-zero solution. It is shown that the solution of the homogeneous boundary value problem corresponding to the original boundary value problem is not unique, and the load acts as a strong perturbation of the boundary value problem.