Continuous 2-colorings and topological dynamics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Lecomte
{"title":"Continuous 2-colorings and topological dynamics","authors":"D. Lecomte","doi":"10.4064/dm870-7-2023","DOIUrl":null,"url":null,"abstract":"We first consider the class K of graphs on a zero-dimensional metrizable compact space with continuous chromatic number at least three. We provide a concrete basis of size continuum for K made up of countable graphs, comparing them with the quasi-order associated with injective continuous homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains in K. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms of the Cantor space is Borel reducible to the equivalence relation associated with our quasi-order. We also prove that there is no antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic number at least three. We study the graphs induced by a continuous function, and show that any basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact space with continuous chromatic number at least three must have size continuum, using odometers or subshifts.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm870-7-2023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We first consider the class K of graphs on a zero-dimensional metrizable compact space with continuous chromatic number at least three. We provide a concrete basis of size continuum for K made up of countable graphs, comparing them with the quasi-order associated with injective continuous homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains in K. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms of the Cantor space is Borel reducible to the equivalence relation associated with our quasi-order. We also prove that there is no antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic number at least three. We study the graphs induced by a continuous function, and show that any basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact space with continuous chromatic number at least three must have size continuum, using odometers or subshifts.
连续2-着色与拓扑动力学
我们首先考虑一个连续色数至少为3的零维可度量紧空间上的K类图。给出了由可数图K组成的大小连续的一个具体基础,并将其与内射连续同态的拟序进行了比较。我们用里程表证明了这样一个基的大小是尖锐的。然而,再次利用距离计,我们证明了K中不存在反链基,并给出了K中的无限递减链。我们的方法表明,Cantor空间的极小同纯的翻转共轭的等价关系是Borel可约为与我们拟序相关的等价关系。我们还证明了在连续色数至少为3的零维波兰空间上的图类不存在反链基。本文研究了由连续函数诱导的图,并利用距离计或子移证明了由连续色数至少为3的零维可度量紧化空间的同胚诱导的图的任何基必须具有尺寸连续体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信