{"title":"Continuous 2-colorings and topological dynamics","authors":"D. Lecomte","doi":"10.4064/dm870-7-2023","DOIUrl":null,"url":null,"abstract":"We first consider the class K of graphs on a zero-dimensional metrizable compact space with continuous chromatic number at least three. We provide a concrete basis of size continuum for K made up of countable graphs, comparing them with the quasi-order associated with injective continuous homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains in K. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms of the Cantor space is Borel reducible to the equivalence relation associated with our quasi-order. We also prove that there is no antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic number at least three. We study the graphs induced by a continuous function, and show that any basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact space with continuous chromatic number at least three must have size continuum, using odometers or subshifts.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm870-7-2023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We first consider the class K of graphs on a zero-dimensional metrizable compact space with continuous chromatic number at least three. We provide a concrete basis of size continuum for K made up of countable graphs, comparing them with the quasi-order associated with injective continuous homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains in K. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms of the Cantor space is Borel reducible to the equivalence relation associated with our quasi-order. We also prove that there is no antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic number at least three. We study the graphs induced by a continuous function, and show that any basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact space with continuous chromatic number at least three must have size continuum, using odometers or subshifts.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.