N. Larché, C. Leballeur, Sandra Le Manchet, Wenle He
{"title":"Localized Corrosion of High-Grade Stainless Steels in Chlorinated Seawater","authors":"N. Larché, C. Leballeur, Sandra Le Manchet, Wenle He","doi":"10.5006/4348","DOIUrl":null,"url":null,"abstract":"Chlorination is widely used in seawater systems to avoid fouling. Free chlorine is a strong oxidizing agent that prevents the biofilm formation on immersed surfaces, when used above a certain content. However, the presence of residual chlorine associated with the high chloride content in seawater, significantly increases the risk of localized corrosion for most stainless steels. In the present study, a module initially developed to quantify the formation of electroactive biofilms on stainless steels has been used to assess the corrosivity of chlorinated seawater. Both the electrochemical potential and the cathodic current were measured on super-duplex stainless steel as a function of residual chlorine levels and seawater temperatures. In parallel, long term localized corrosion tests have been performed in simulated environments to assess the environmental limits for safe use of high-grade stainless steels in chlorinated seawater. It includes crevice corrosion exposure tests using adapted ISO18070:2015 crevice formers and internal tube pitting corrosion exposure tests in model tube heat exchangers simulating heat flux from 35°C to 170°C. The synergetic effect of residual chlorine content and temperature on the risk of localized corrosion has been quantified. Corrosion resistance properties are correlated to the electrochemical monitoring data, and the environmental limits of selected stainless steels have been established for duplex stainless steel UNS S32205, super-duplex stainless steel UNS S32750, hyper-duplex stainless steel UNS S32707 and the high-grade austenitic stainless steel UNS S31266.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4348","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorination is widely used in seawater systems to avoid fouling. Free chlorine is a strong oxidizing agent that prevents the biofilm formation on immersed surfaces, when used above a certain content. However, the presence of residual chlorine associated with the high chloride content in seawater, significantly increases the risk of localized corrosion for most stainless steels. In the present study, a module initially developed to quantify the formation of electroactive biofilms on stainless steels has been used to assess the corrosivity of chlorinated seawater. Both the electrochemical potential and the cathodic current were measured on super-duplex stainless steel as a function of residual chlorine levels and seawater temperatures. In parallel, long term localized corrosion tests have been performed in simulated environments to assess the environmental limits for safe use of high-grade stainless steels in chlorinated seawater. It includes crevice corrosion exposure tests using adapted ISO18070:2015 crevice formers and internal tube pitting corrosion exposure tests in model tube heat exchangers simulating heat flux from 35°C to 170°C. The synergetic effect of residual chlorine content and temperature on the risk of localized corrosion has been quantified. Corrosion resistance properties are correlated to the electrochemical monitoring data, and the environmental limits of selected stainless steels have been established for duplex stainless steel UNS S32205, super-duplex stainless steel UNS S32750, hyper-duplex stainless steel UNS S32707 and the high-grade austenitic stainless steel UNS S31266.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.