Variable screening in multivariate linear regression with high-dimensional covariates

IF 0.7 Q3 STATISTICS & PROBABILITY
Shiferaw B. Bizuayehu, Luquan Li, Jin Xu
{"title":"Variable screening in multivariate linear regression with high-dimensional covariates","authors":"Shiferaw B. Bizuayehu, Luquan Li, Jin Xu","doi":"10.1080/24754269.2021.1982607","DOIUrl":null,"url":null,"abstract":"We propose two variable selection methods in multivariate linear regression with high-dimensional covariates. The first method uses a multiple correlation coefficient to fast reduce the dimension of the relevant predictors to a moderate or low level. The second method extends the univariate forward regression of Wang [(2009). Forward regression for ultra-high dimensional variable screening. Journal of the American Statistical Association, 104(488), 1512–1524. https://doi.org/10.1198/jasa.2008.tm08516] in a unified way such that the variable selection and model estimation can be obtained simultaneously. We establish the sure screening property for both methods. Simulation and real data applications are presented to show the finite sample performance of the proposed methods in comparison with some naive method.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"241 - 253"},"PeriodicalIF":0.7000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1982607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We propose two variable selection methods in multivariate linear regression with high-dimensional covariates. The first method uses a multiple correlation coefficient to fast reduce the dimension of the relevant predictors to a moderate or low level. The second method extends the univariate forward regression of Wang [(2009). Forward regression for ultra-high dimensional variable screening. Journal of the American Statistical Association, 104(488), 1512–1524. https://doi.org/10.1198/jasa.2008.tm08516] in a unified way such that the variable selection and model estimation can be obtained simultaneously. We establish the sure screening property for both methods. Simulation and real data applications are presented to show the finite sample performance of the proposed methods in comparison with some naive method.
高维协变量多元线性回归的变量筛选
在具有高维协变量的多元线性回归中,我们提出了两种变量选择方法。第一种方法使用多重相关系数将相关预测因子的维数快速降低到中等或低水平。第二种方法扩展了王的单变量正向回归[(2009).超高维变量筛选的正向回归.美国统计协会杂志,104(488),1512-1524。https://doi.org/10.1198/jasa.2008.tm08516]以统一的方式使得可以同时获得变量选择和模型估计。我们建立了两种方法的确定筛选性质。仿真和实际数据应用表明,与一些朴素方法相比,所提出的方法具有有限样本的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信