{"title":"Formation of Ordered Patterns in Electroresponsive Polymer Ionic Liquid Blends","authors":"Ashima Choudhury, S. Sairam, Pratyush Dayal","doi":"10.1002/mats.202200040","DOIUrl":null,"url":null,"abstract":"<p>Directing reaction-diffusion (RD) phenomena, through the use of external stimuli has been one of the widely used approaches for designing multifunctional soft materials. Using modeling and simulation, it is demonstrated that the nonuniform electric field can be harnessed to create intricate ordered patterns in polymer ionic liquid (PIL) blends. The investigation begins with the establishment of the equilibrium phase diagrams of electroresponsive PIL blends and subsequently, use the Poisson–Nernst–Planck equations to model the kinetics of pattern formation. The simulations reveal that in the presence of nonuniform electric field the ionic liquid (IL) rich domains self-aggregate in high electric field regions. Thus, the ordering of the electric field regions effectively dictates the ordering of the IL-rich phase in the PIL blends. It is also demonstrated that the mechanism of spatiotemporal pattern formation is quite robust and can be dynamically controlled by varying the distribution of electric field. It is believed that the methodology provides a simplistic mechanism for creating ordered patterns in soft materials through RD phenomena that can be exploited for designing other similar stimuli-responsive systems.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Directing reaction-diffusion (RD) phenomena, through the use of external stimuli has been one of the widely used approaches for designing multifunctional soft materials. Using modeling and simulation, it is demonstrated that the nonuniform electric field can be harnessed to create intricate ordered patterns in polymer ionic liquid (PIL) blends. The investigation begins with the establishment of the equilibrium phase diagrams of electroresponsive PIL blends and subsequently, use the Poisson–Nernst–Planck equations to model the kinetics of pattern formation. The simulations reveal that in the presence of nonuniform electric field the ionic liquid (IL) rich domains self-aggregate in high electric field regions. Thus, the ordering of the electric field regions effectively dictates the ordering of the IL-rich phase in the PIL blends. It is also demonstrated that the mechanism of spatiotemporal pattern formation is quite robust and can be dynamically controlled by varying the distribution of electric field. It is believed that the methodology provides a simplistic mechanism for creating ordered patterns in soft materials through RD phenomena that can be exploited for designing other similar stimuli-responsive systems.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.