Treatment of Phosphoric Acid Sludge for Rare Earths Recovery I

Q4 Materials Science
G. Allaedini, Patrick Zhang
{"title":"Treatment of Phosphoric Acid Sludge for Rare Earths Recovery I","authors":"G. Allaedini, Patrick Zhang","doi":"10.4018/IJSEIMS.2019070101","DOIUrl":null,"url":null,"abstract":"A total of nine polymers were first tested. Correlations between molecular weight and sludge settling rate were identified for three types of polymers with a general trend of higher molecular weight giving a faster settling rate. Among the non-ionic polymers, the medium molecular weight polymer produced the best results (1831.88 ppm). Among the cationic flocculants, the lowest molecular weight polymer resulted in more REEs distribution (2478.81 ppm). It was concluded that the super high molecular weight of anionic flocculants works best for treating phosphoric acid sludge which resulted in REE concentration of 2568.69 ppm. Five co-polymers with different anionic ratio were tested as well. A higher anionic ratio resulted in faster settlement. It was found that the higher was the anionic ratio of the flocculant, the higher was REE concentration in the final solids and the highest anionic ratio polymer resulted in 2999.64 ppm of REE. This trend was attributed to zeta potential change due to addition of the polymer.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2019070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

Abstract

A total of nine polymers were first tested. Correlations between molecular weight and sludge settling rate were identified for three types of polymers with a general trend of higher molecular weight giving a faster settling rate. Among the non-ionic polymers, the medium molecular weight polymer produced the best results (1831.88 ppm). Among the cationic flocculants, the lowest molecular weight polymer resulted in more REEs distribution (2478.81 ppm). It was concluded that the super high molecular weight of anionic flocculants works best for treating phosphoric acid sludge which resulted in REE concentration of 2568.69 ppm. Five co-polymers with different anionic ratio were tested as well. A higher anionic ratio resulted in faster settlement. It was found that the higher was the anionic ratio of the flocculant, the higher was REE concentration in the final solids and the highest anionic ratio polymer resulted in 2999.64 ppm of REE. This trend was attributed to zeta potential change due to addition of the polymer.
磷酸污泥的稀土回收处理[j]
首先测试了总共九种聚合物。对于三种类型的聚合物,确定了分子量和污泥沉降速率之间的相关性,总体趋势是分子量越高,沉降速率越快。在非离子聚合物中,中等分子量聚合物产生了最好的结果(1831.88ppm)。在阳离子絮凝剂中,分子量最低的聚合物导致更多的REE分布(2478.81ppm)。结果表明,超高分子量阴离子絮凝剂对磷酸污泥的处理效果最好,其REE浓度为2568.69ppm。还测试了五种不同阴离子比例的共聚物。阴离子比例越高,沉降越快。研究发现,絮凝剂的阴离子比越高,最终固体中的REE浓度越高,阴离子比最高的聚合物产生2999.64ppm的REE。这种趋势归因于聚合物的加入引起的ζ电位变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信