On the Simplicial Complexes Associated to the Cyclotomic Polynomial

IF 1 Q1 MATHEMATICS
A. Kostic
{"title":"On the Simplicial Complexes Associated to the Cyclotomic Polynomial","authors":"A. Kostic","doi":"10.46793/kgjmat2302.309k","DOIUrl":null,"url":null,"abstract":"Musiker and Reiner in [9] studied coefficients of cyclotomic polynomial in terms of topology of associated simplicial complexes. They determined homotopy type of associated complexes for all cyclotomic polynomials, except for cyclotomic polynomials whose degree is a product of three prime numbers. Using discrete Morse theory for simplicial complexes we partially answer a question posed by the two authors regarding homotopy type of the associated complexes when degree of the cyclotomic polynomial is a product of three prime numbers.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2302.309k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Musiker and Reiner in [9] studied coefficients of cyclotomic polynomial in terms of topology of associated simplicial complexes. They determined homotopy type of associated complexes for all cyclotomic polynomials, except for cyclotomic polynomials whose degree is a product of three prime numbers. Using discrete Morse theory for simplicial complexes we partially answer a question posed by the two authors regarding homotopy type of the associated complexes when degree of the cyclotomic polynomial is a product of three prime numbers.
关于环形多项式的简单配合物
Musiker和Reiner在[9]中从相关简单配合物的拓扑结构角度研究了分环多项式的系数。他们确定了除次为三个素数积的环分多项式外,所有环分多项式的同伦型相关复合体。利用简单复合体的离散莫尔斯理论,部分地回答了两位作者提出的有关复合体的同伦类型问题,即当环切多项式的阶是三个素数的积时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信