{"title":"A distributed object-oriented simulator framework for marine power plants with weak power grids","authors":"Stian Skjong, E. Pedersen","doi":"10.1080/20464177.2022.2120171","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, we discuss and demonstrate how multi-engine marine power plants with weak power grids efficiently can be set up and simulated in a distributed co-simulation framework. To facilitate configuration switching such as starting and stopping, connecting and disconnecting arbitrary gensets online, the generator models are modelled as hybrid causality component models. This implementation enables seamless and energy conservative model switching. Also, the proposed simulator framework is scalable such that the number of gensets in the power plant can be set by a single parameter, which automatically scales the power management system and the tailored simulator master algorithm accordingly. To control the number of active gensets being connected to the power grid while running the simulation, a simple mixed integer linear programming formulation is proposed. A simulation case study including a marine power plant configuration with four equal-sized gensets is conducted in the end to demonstrate the features of the proposed simulator framework, which also can be applied to, e.g. a small wind farm, or an isolated number of islands with interconnected power generators.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"176 - 188"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2022.2120171","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this work, we discuss and demonstrate how multi-engine marine power plants with weak power grids efficiently can be set up and simulated in a distributed co-simulation framework. To facilitate configuration switching such as starting and stopping, connecting and disconnecting arbitrary gensets online, the generator models are modelled as hybrid causality component models. This implementation enables seamless and energy conservative model switching. Also, the proposed simulator framework is scalable such that the number of gensets in the power plant can be set by a single parameter, which automatically scales the power management system and the tailored simulator master algorithm accordingly. To control the number of active gensets being connected to the power grid while running the simulation, a simple mixed integer linear programming formulation is proposed. A simulation case study including a marine power plant configuration with four equal-sized gensets is conducted in the end to demonstrate the features of the proposed simulator framework, which also can be applied to, e.g. a small wind farm, or an isolated number of islands with interconnected power generators.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.