An Incremental Isomap Method for Hyperspectral Dimensionality Reduction and Classification

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
Yi Ma, Zezhong Zheng, Yutang Ma, Mingcang Zhu, Huang Ran, Xueye Chen, Qingjun Peng, Yong He, Yufeng Lu, G.M. Zhou, Zhigang Liu, Mujie Li
{"title":"An Incremental Isomap Method for Hyperspectral Dimensionality Reduction and Classification","authors":"Yi Ma, Zezhong Zheng, Yutang Ma, Mingcang Zhu, Huang Ran, Xueye Chen, Qingjun Peng, Yong He, Yufeng Lu, G.M. Zhou, Zhigang Liu, Mujie Li","doi":"10.14358/PERS.87.7.445","DOIUrl":null,"url":null,"abstract":"Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold\n learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset\n of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support\n vector machine.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"87 1","pages":"445-455"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/PERS.87.7.445","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.
一种用于高光谱降维和分类的增量Isomap方法
许多流形学习算法对大小为N×N的数据相似性矩阵进行特征向量分析,其中N是数据点的数量。因此,分析的存储器复杂性不小于O(N2)。在本文中,我们提出了一种增量流形学习方法来处理用于土地利用识别的大型高光谱数据集。在我们的方法中,高维高光谱图像数据集的维数是通过训练数据集获得的。利用局部曲率变化算法对数据点的子集进行采样,作为地标。然后,基于地标来识别流形骨架。我们的方法在三个AVIRIS高光谱数据集上进行了验证,优于使用k–近邻分类器的比较算法,并使用支持向量机获得了第二好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信