Isolation, Identification, and Characterization of Phytase Producing Probiotic Lactic Acid Bacteria from Neonatal Fecal Samples Having Dephytinization Activity

IF 1.8 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
B. Sharma, G. Shukla
{"title":"Isolation, Identification, and Characterization of Phytase Producing Probiotic Lactic Acid Bacteria from Neonatal Fecal Samples Having Dephytinization Activity","authors":"B. Sharma, G. Shukla","doi":"10.1080/08905436.2020.1746332","DOIUrl":null,"url":null,"abstract":"ABSTRACT Phytic acid, the main phosphate storage component of plant-based diet, is one of the prime causes of micronutrient deficiency in vegetarians due to the formation of non-degradable cation-phytic acid complex in gastrointestinal tract of monogastric animals that are devoid of phytase enzyme. Therefore, the present study was designed to isolate phytase producing probiotic from neonatal feces which may enhance the bioavailability of phosphorous micronutrient. Experimentally, 13 phytase producing lactic acid bacteria (LAB) were isolated from 28 neonatal fecal samples and characterized both phenotypically and for probiotic attributes. Among these, Isolate 5b exhibited potent probiotic potential with significant (p < .01) phytase activity (4.55 U/mL) and was identified phylogenetically using both 16S rRNA and MALDI-TOF MS analysis as Pediococcus acidilactici BNS5B. Interestingly, it was found that phytase from P. acidilactici BNS5B significantly dephytinized phytic acid from modified diet (96.59%) and brown bread (88.89%) after 15 min of phytase treatment at 37°C. Therefore, this provides an opportunity to develop P. acidilactici BNS5B as a probiotic to be used as a supplement in feed/food of monogastric animals and humans. This also provides the rationale for further in vivo studies to use phytase producing probiotic in relation to maintaining and improving health.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"34 1","pages":"151 - 171"},"PeriodicalIF":1.8000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2020.1746332","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2020.1746332","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT Phytic acid, the main phosphate storage component of plant-based diet, is one of the prime causes of micronutrient deficiency in vegetarians due to the formation of non-degradable cation-phytic acid complex in gastrointestinal tract of monogastric animals that are devoid of phytase enzyme. Therefore, the present study was designed to isolate phytase producing probiotic from neonatal feces which may enhance the bioavailability of phosphorous micronutrient. Experimentally, 13 phytase producing lactic acid bacteria (LAB) were isolated from 28 neonatal fecal samples and characterized both phenotypically and for probiotic attributes. Among these, Isolate 5b exhibited potent probiotic potential with significant (p < .01) phytase activity (4.55 U/mL) and was identified phylogenetically using both 16S rRNA and MALDI-TOF MS analysis as Pediococcus acidilactici BNS5B. Interestingly, it was found that phytase from P. acidilactici BNS5B significantly dephytinized phytic acid from modified diet (96.59%) and brown bread (88.89%) after 15 min of phytase treatment at 37°C. Therefore, this provides an opportunity to develop P. acidilactici BNS5B as a probiotic to be used as a supplement in feed/food of monogastric animals and humans. This also provides the rationale for further in vivo studies to use phytase producing probiotic in relation to maintaining and improving health.
从具有脱植酸活性的新生儿粪便样品中分离、鉴定和鉴定产植酸酶的益生菌乳酸菌
植酸是植物性饮食中主要的磷酸盐储存成分,是导致素食者微量营养素缺乏的主要原因之一,因为缺乏植酸酶的单胃动物的胃肠道中会形成不可降解的阳离子-植酸复合物。因此,本研究旨在从新生儿粪便中分离出产生植酸酶的益生菌,以提高磷微量营养素的生物利用度。从28份新生儿粪便中分离到13株产植酸酶乳酸菌,并对其表型和益生菌特性进行了表征。其中,分离物5b表现出强大的益生菌潜力,植酸酶活性显著(p < 0.01) (4.55 U/mL),通过16S rRNA和MALDI-TOF MS分析系统发育鉴定为嗜酸性Pediococcus acililactii BNS5B。有趣的是,在37°C条件下,经过15 min的植酸酶处理,P. acidilactici BNS5B的植酸酶对改良日粮和黑面包中的植酸脱除效果显著(96.59%),脱除效果为88.89%。因此,这为开发P. acidilactii BNS5B作为益生菌作为单胃动物和人类饲料/食物的补充提供了机会。这也为进一步利用植酸酶产生的益生菌维持和改善健康的体内研究提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biotechnology
Food Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production. Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published. Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信