Digital Twin-Enabled Intelligent DDoS Detection Mechanism for Autonomous Core Networks

Q1 Social Sciences
Yagmur Yigit, Bahadır Bal, Aytac Karameseoglu, T. Duong, B. Canberk
{"title":"Digital Twin-Enabled Intelligent DDoS Detection Mechanism for Autonomous Core Networks","authors":"Yagmur Yigit, Bahadır Bal, Aytac Karameseoglu, T. Duong, B. Canberk","doi":"10.1109/MCOMSTD.0001.2100022","DOIUrl":null,"url":null,"abstract":"Existing distributed denial of service attack (DDoS) solutions cannot handle highly aggregated data rates; thus, they are unsuitable for Internet service provider (ISP) core networks. This article proposes a digital twin-enabled intelligent DDoS detection mechanism using an online learning method for autonomous systems. Our contributions are three-fold: we first design a DDoS detection architecture based on the digital twin for ISP core networks. We implemented a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle core network data. We used an online learning approach to update the model instantly and efficiently, improve the learning model quickly, and ensure accurate predictions. Finally, we reveal that our proposed solution successfully detects DDoS attacks and updates the feature selection method and learning model with a true classification rate of ninety-seven percent. Our proposed solution can estimate the attack within approximately fifteen minutes after the DDoS attack starts.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"6 1","pages":"38-44"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCOMSTD.0001.2100022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Existing distributed denial of service attack (DDoS) solutions cannot handle highly aggregated data rates; thus, they are unsuitable for Internet service provider (ISP) core networks. This article proposes a digital twin-enabled intelligent DDoS detection mechanism using an online learning method for autonomous systems. Our contributions are three-fold: we first design a DDoS detection architecture based on the digital twin for ISP core networks. We implemented a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle core network data. We used an online learning approach to update the model instantly and efficiently, improve the learning model quickly, and ensure accurate predictions. Finally, we reveal that our proposed solution successfully detects DDoS attacks and updates the feature selection method and learning model with a true classification rate of ninety-seven percent. Our proposed solution can estimate the attack within approximately fifteen minutes after the DDoS attack starts.
自主核心网的数字孪生智能DDoS检测机制
现有的分布式拒绝服务攻击(DDoS)解决方案无法处理高度聚合的数据速率;因此,它们不适合于互联网服务提供商(ISP)的核心网络。本文针对自治系统提出了一种基于在线学习方法的数字孪生智能DDoS检测机制。我们的贡献有三个方面:我们首先为ISP核心网络设计了一个基于数字孪生的DDoS检测架构。我们实现了另一个下一代(YANG)模型和自动特征选择(AutoFS)模块来处理核心网络数据。我们使用在线学习方法即时高效地更新模型,快速改进学习模型,并确保准确预测。最后,我们发现,我们提出的解决方案成功地检测到了DDoS攻击,并更新了特征选择方法和学习模型,真实分类率为97%。我们提出的解决方案可以在DDoS攻击开始后大约15分钟内估计攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信