Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness

IF 0.6 4区 数学 Q2 LOGIC
M. Rybakov
{"title":"Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness","authors":"M. Rybakov","doi":"10.1093/jigpal/jzad002","DOIUrl":null,"url":null,"abstract":"\n In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\\textbf {GL}$, $\\textbf {Grz}$, $\\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\\textbf {QwGrz}$ and $\\textbf {QGL.3}$ or between $\\textbf {QwGrz}$ and $\\textbf {QGrz.3}$ is $\\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\\textbf {GL}$, $\\textbf {Grz}$, $\\textbf {wGrz}$ are not Kripke complete. Both $\\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ are not Kripke complete. Both $\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.
可证明性模态逻辑的谓词对应:高不可判定性和Kripke不完全性
本文研究了模态命题逻辑$\textbf{GL}$、$\textbf{Grz}$和$\textbf{wGrz}$的谓词对应项及其扩展。证明了$\textbf{QwGrz}$和$\textbf{QGL.3}$之间或$\textbf{QwGrz}$和$_textbf{QGrz.3}美元之间的每个逻辑的Kripke框架上的语义结果集是$\Pi^1_1$-即使在具有三个(有时,两个)单独变量、两个(有时一个)一元谓词字母和一个命题字母的语言中也是困难的。作为推论,证明了基于经典一阶逻辑和模态命题逻辑$\textbf{GL}$、$\textbf{Grz}$和$\textbf{wGrz}$的模态谓词公理系统的无限族不是Kripke完备的。本文的$\Pi^1_1$-硬度和Kripke不完全性结果都不取决于逻辑是否包含Barcan公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信