Christina Stamou, Eleftheria Barouni, J. Plakatouras, M. Sigalas, C. Raptopoulou, V. Psycharis, E. Bakalbassis, S. Perlepes
{"title":"The “Periodic Table” of 1-methylbenzotriazole: Zinc(II) Complexes","authors":"Christina Stamou, Eleftheria Barouni, J. Plakatouras, M. Sigalas, C. Raptopoulou, V. Psycharis, E. Bakalbassis, S. Perlepes","doi":"10.3390/inorganics11090356","DOIUrl":null,"url":null,"abstract":"In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, 1; X = Br, 3; X = I, 4), (MebtaH)2[ZnCl4] (2), tet-[Zn(NO3)2(Mebta)2] (5), oct-[Zn(NO3)2(Mebta)2] (6), and [Zn(Mebta)4](Y)2 [Y = ClO4, 7; Y = PF6, 8]. Solid-state thermal decomposition of 2 leads to 1 in quantitative yield. The structures of 3, 4, 5, 6, and 7 were determined by single-crystal crystallography. The structures of the remaining complexes were proposed based on spectroscopic evidence. In all compounds, Mebta behaves as monodentate ligand using the nitrogen of the position 3 as donor. Complexes 1–4, 7, and 8 are tetrahedral. Complexes 5 and 6 are isostoichiometric and their preparation in pure forms depends on the reaction conditions; in the former the ZnII atom has a tetrahedral geometry, whereas in the latter the metal ion is octahedral. This case of rare isomerism arises from the monodentate (in 5) vs. bidentate (in 6) coordination of the nitrato groups. Extensive π–π stacking interactions and non-classical H bonds build interesting 3D architectures in the structurally characterized complexes. The compounds were characterized by IR, far-IR, and Raman spectroscopies in the solid state, and the data were interpreted in terms of the structures (known or proposed) of the complexes and the coordination modes of the organic and inorganic ligands involved. The solid-state structures of the complexes are not retained in solution, as proven by NMR (1H, 13C[1H]) spectroscopy and molar conductivity data. The thermal decomposition study of 1 and 3 leads to stable intermediates with 1:1 stoichiometry, i.e., ZnX2(Mebta). Based on far-IR spectra, polymeric tetrahedral structures are possible with simultaneous presence of terminal and bridging X− groups. Liquid-phase ab initio (MP2) and gas-phase DFT calculations, performed on Mebta and the nitrato complexes, respectively, shed light on the tendency of Mebta for N3-coordination, and the existence and relative stabilities of 5 and 6.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11090356","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, 1; X = Br, 3; X = I, 4), (MebtaH)2[ZnCl4] (2), tet-[Zn(NO3)2(Mebta)2] (5), oct-[Zn(NO3)2(Mebta)2] (6), and [Zn(Mebta)4](Y)2 [Y = ClO4, 7; Y = PF6, 8]. Solid-state thermal decomposition of 2 leads to 1 in quantitative yield. The structures of 3, 4, 5, 6, and 7 were determined by single-crystal crystallography. The structures of the remaining complexes were proposed based on spectroscopic evidence. In all compounds, Mebta behaves as monodentate ligand using the nitrogen of the position 3 as donor. Complexes 1–4, 7, and 8 are tetrahedral. Complexes 5 and 6 are isostoichiometric and their preparation in pure forms depends on the reaction conditions; in the former the ZnII atom has a tetrahedral geometry, whereas in the latter the metal ion is octahedral. This case of rare isomerism arises from the monodentate (in 5) vs. bidentate (in 6) coordination of the nitrato groups. Extensive π–π stacking interactions and non-classical H bonds build interesting 3D architectures in the structurally characterized complexes. The compounds were characterized by IR, far-IR, and Raman spectroscopies in the solid state, and the data were interpreted in terms of the structures (known or proposed) of the complexes and the coordination modes of the organic and inorganic ligands involved. The solid-state structures of the complexes are not retained in solution, as proven by NMR (1H, 13C[1H]) spectroscopy and molar conductivity data. The thermal decomposition study of 1 and 3 leads to stable intermediates with 1:1 stoichiometry, i.e., ZnX2(Mebta). Based on far-IR spectra, polymeric tetrahedral structures are possible with simultaneous presence of terminal and bridging X− groups. Liquid-phase ab initio (MP2) and gas-phase DFT calculations, performed on Mebta and the nitrato complexes, respectively, shed light on the tendency of Mebta for N3-coordination, and the existence and relative stabilities of 5 and 6.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD