Gang-Zhou Wu , Yin Fang , Yue-Yue Wang , Guo-Cheng Wu , Chao-Qing Dai
{"title":"Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN","authors":"Gang-Zhou Wu , Yin Fang , Yue-Yue Wang , Guo-Cheng Wu , Chao-Qing Dai","doi":"10.1016/j.chaos.2021.111393","DOIUrl":null,"url":null,"abstract":"<div><p>A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrödinger equation in birefringent fibers. At the same time, the elastic collision process of the mixed bright-dark soliton is predicted. Compared the predicted results with the exact solution, the modified physics-informed neural network method is proven to be effective to solve the coupled nonlinear Schrödinger equation. Moreover, the dispersion coefficients and nonlinearity coefficients of the coupled nonlinear Schrödinger equation can be learned by modified physics-informed neural network. This provides a reference for us to use deep learning methods to study the dynamic characteristics of solitons in optical fibers.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"152 ","pages":"Article 111393"},"PeriodicalIF":5.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077921007475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 41
Abstract
A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrödinger equation in birefringent fibers. At the same time, the elastic collision process of the mixed bright-dark soliton is predicted. Compared the predicted results with the exact solution, the modified physics-informed neural network method is proven to be effective to solve the coupled nonlinear Schrödinger equation. Moreover, the dispersion coefficients and nonlinearity coefficients of the coupled nonlinear Schrödinger equation can be learned by modified physics-informed neural network. This provides a reference for us to use deep learning methods to study the dynamic characteristics of solitons in optical fibers.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.