A New Immersed Finite Element Method for Two-Phase Stokes Problems Having Discontinuous Pressure

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Gwanghyun Jo, D. Kwak
{"title":"A New Immersed Finite Element Method for Two-Phase Stokes Problems Having Discontinuous Pressure","authors":"Gwanghyun Jo, D. Kwak","doi":"10.1515/cmam-2022-0122","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop a new immersed finite element method (IFEM) for two-phase incompressible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the standard Crouzeix–Raviart element and the P 0 {P_{0}} element pair is used. On the interface element, the basis functions developed for scalar interface problems (Kwak et al., An analysis of a broken P 1 {P_{1}} -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind of basis satisfies the Laplace–Young condition under the assumption of the continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfying the Laplace–Young condition. We remark that in the second kind the pressure variable has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case. Numerical results including the case of the discontinuous pressure variable are provided. We see optimal convergence orders for all examples.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0122","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we develop a new immersed finite element method (IFEM) for two-phase incompressible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the standard Crouzeix–Raviart element and the P 0 {P_{0}} element pair is used. On the interface element, the basis functions developed for scalar interface problems (Kwak et al., An analysis of a broken P 1 {P_{1}} -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind of basis satisfies the Laplace–Young condition under the assumption of the continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfying the Laplace–Young condition. We remark that in the second kind the pressure variable has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case. Numerical results including the case of the discontinuous pressure variable are provided. We see optimal convergence orders for all examples.
具有不连续压力的两相冲程问题的浸入式有限元新方法
摘要本文提出了一种新的求解两相不可压缩Stokes流的浸入式有限元方法。我们允许界面切割有限元。在非接口元素上,使用标准的Crouzeix–Raviart元素和P0{P_{0}}元素对。在界面单元上,对为标量界面问题开发的基函数(Kwak et al.,An analysis of a breaked P1{P_{1}}-conformant finite element method for interface problems,SIAM J.Numer.Anal.(2010))进行了修改,使得速度和压力变量之间的耦合不同。基函数有两种。在压力变量连续性的假设下,第一类基满足拉普拉斯-杨条件。在第二种情况下,速度是气泡型的,并与不连续压力耦合,仍然满足拉普拉斯-杨条件。我们注意到,在第二类中,压力变量在每个界面元件上有两个自由度。因此,我们的方法可以处理不连续压力的情况。给出了包括不连续压力变量情况下的数值结果。我们看到所有例子的最优收敛阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信